Abstract-We present experimental and numerical studies of a novel packet-switch architecture, the data vortex, designed for large-scale photonic interconnections. The selfrouting multihop packet switch efficiently scales to large port counts ( 10 k) while maintaining low latencies, a narrow latency distribution, and high throughput. To facilitate optical implementation, the data-vortex architecture employs a novel hierarchical topology, traffic control, and synchronous timing that act to reduce the necessary routing logic operations and buffering. As a result of this architecture, all routing decisions for the data packets are based on a single logic operation at each node. The routing is further simplified by the employment of wavelength division multiplexing (WDM)-encoded header bits, which enable packet-header processing by simple wavelength filtering. The packet payload remains in the optical domain as it propagates through the data-vortex switch fabric, exploiting the transparency and high bandwidths achievable in fiber optic transmission. In this paper, we discuss numerical simulations of the data-vortex performance and report results from an experimental investigation of multihop WDM packet routing in a recirculating test bed.Index Terms-Optical networks, optical packet switch, wavelength division multiplexing (WDM) optical packet routing.
A new optical packet switching network and its enabling technologies are investigated for implementation in a Petaflops scale supercomputer system. We capitalize on the immense bandwidth of the optical fiber interconnects by deploying WDM/TDM packet payloads. To accommodate current optical switching technologies, the routing operations in the network are drastically simplified and the need for buffering is completely eliminated. This paper presents the experimental demonstration of the routing within the unique packet switched architecture. Multiple node hops are demonstrated in a node test-bed environment with a re-circulating loop configuration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.