Viral vectors are the most efficient tools for gene delivery, and the search for tissue-specific infecting viruses is important for the development of in vivo gene therapy strategies. The baculovirus Autographa californica nuclear polyhedrosis virus is widely used as a vector for expression of foreign genes in insect cells, and its host specificity is supposed to be restricted to arthropods. Here we demonstrate that recombinant A. californica nuclear polyhedrosis virus is efficiently taken up by human hepatocytes via an endosomal pathway. High-level reporter gene expression from heterologous promoters was observed in human and rabbit hepatocytes in vitro. Mouse hepatocytes and some other epithelial cell types are targeted at a considerably lower rate. The efficiency of gene transfer by baculovirus considerably exceeds that obtained by calcium phosphate or lipid transfection. These properties of baculovirus suggest a use for it as a vector for liver-directed gene transfer but highlight a potential risk in handling certain recombinant baculoviruses.
beta-Secretase plays a critical role in beta-amyloid formation and thus provides a therapeutic target for Alzheimer's disease. Inhibitor design has usually focused on active-site binding, neglecting the subcellular localization of active enzyme. We have addressed this issue by synthesizing a membrane-anchored version of a beta-secretase transition-state inhibitor by linking it to a sterol moiety. Thus, we targeted the inhibitor to active beta-secretase found in endosomes and also reduced the dimensionality of the inhibitor, increasing its local membrane concentration. This inhibitor reduced enzyme activity much more efficiently than did the free inhibitor in cultured cells and in vivo. In addition to effectively targeting beta-secretase, this strategy could also be used in designing potent drugs against other membrane protein targets.
Gene therapy of liver diseases requires the development of efficient vectors for gene transfer in vivo. Retroviral and adenoviral vectors have been shown to deliver genes efficiently into hepatocytes in vitro and in vivo. However, these vectors do not allow for exclusive infection of the liver which would be highly advantageous for in vivo gene therapy strategies. We have recently demonstrated that genetically modified baculoviruses (Autographa californica nuclear polyhedrosis virus) efficiently deliver genes into cultured cells and have a strong preference for hepatocytes of different origin. Baculoviral gene transduction efficiency into human hepatocytes was determined to approach 100% and expression levels are high, provided that gene expression is controlled by mammalian promoters. In this report, we present further properties of baculoviruses regarding their use for hepatocyte gene transfer. Baculovirus-mediated gene expression declines rapidly in the hepatocellular carcinoma cell line Huh7 and more slowly in primary cultures of mouse hepatocytes. Direct application of baculoviruses for gene delivery to the liver in vivo is hampered by serum components, presumably by complement. However, we demonstrate here that baculoviral gene transfer is feasible in ex vivo perfused human liver tissue. This result suggests the development of a strategy using baculoviral vectors for liver-directed gene therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.