Trimmed NURBS surfaces are often used to model smooth and complex objects. Unfortunately, most existing hardware graphics accelerators cannot render them directly. Although there are a lot of methods proposed to accelerate the rendering of such surfaces, majority of them are based on tessellation, which is developed primarily for handling non-deforming objects. For an object that may deform in run-time, such as clothing, facial expression, human and animal character, the tessellation process will need to be performed repeatedly while the object is deforming. However, as the tessellation process is very time consuming, interactive display of deforming objects is difficult. This explains why deformable objects are rarely used in virtual reality applications. In this paper, we present a efficient method for incremental rendering of deformable trimmed NURBS surfaces. This method can handle both trimmed surface deformation and trimming curve deformation. Experimental results show that our method performs significantly faster than the method used in OpenGL.
Deformable objects can be used to model soft objects such as clothing, human faces and animal characters. They are important as they can improve the realism of the applications. However, most existing hardware accelerators cannot render deformable objects directly. A tessellation process is often used to convert a deformable object into polygons so that the hardware graphics accelerator may render them. Unfortunately, this tessellation process is computationally very expensive. While the object is deforming, the tessellation process needs to be performed repeatedly to convert the deforming objects into polygons. As a result, deformable objects are seldom used in real-time applications such as virtual environments and computer games. Since trimmed NURBS surfaces are often used to represent deformable objects, in this paper we present an efficient method for incremental rendering of deformable trimmed NURBS surfaces. A trimmed NURBS surface typically deforms through the deformation of the trimmed NURBS surface and/or the trimming curve. Our method handles both trimmed surface deformation as well as trimming curve deformation. Experimental results show that our method performs significantly faster than the method used in OpenGL and can be used in real-time applications, such as computer games.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.