Abstract-3D surface registration transforms multiple 3D datasets into the same coordinate system so as to align overlapping components of these sets. Recent surveys have covered different aspects of either rigid or non-rigid registration, but seldom discuss them as a whole. Our study serves two purposes: (i) to give a comprehensive survey of both types of registration, focusing on 3D point clouds and meshes, and (ii) to provide a better understanding of registration from the perspective of data fitting. Registration is closely related to data fitting in that it comprises three core interwoven components: model selection, correspondences & constraints and optimization. Study of these components (i) provides a basis for comparison of the novelties of different techniques, (ii) reveals the similarity of rigid and non-rigid registration in terms of problem representations, and (iii) shows how over-fitting arises in non-rigid registration and the reasons for increasing interest in intrinsic techniques. We further summarise some practical issues of registration which include initializations and evaluations, and discuss some of our own observations, insights and foreseeable research trends.
3D models of humans are commonly used within computer graphics and vision, and so the ability to distinguish between body shapes is an important shape retrieval problem. We extend our recent paper which provided a benchmark for testing non-rigid 3D shape retrieval algorithms on 3D human models. This benchmark provided a far stricter challenge than previous shape benchmarks. We
Psychology studies and behavioural observation show that humans shift their attention from one location to another when viewing an image of a complex scene. This is due to the limited capacity of the human visual system in processing simultaneously multiple visual inputs. The sequential shifting of attention on objects in a non-task oriented viewing can be seen as a form of saliency ranking. Although there are methods proposed for predicting saliency rank, they are not able to model this human attention shift well, as they are primarily based on ranking saliency values from binary prediction. Following psychological studies, we propose in this paper to predict the saliency rank by inferring human attention shift. We first construct a large salient object ranking dataset. The saliency rank of objects is defined by the order that an observer attends to these objects based on attention shift. The final saliency rank is an average across the saliency ranks of multiple observers. We then propose a learning-based CNN to leverage both bottom-up and top-down attention mechanisms to predict the saliency rank. Experimental results show that the proposed network achieves state-of-the-art performances on salient object rank prediction.
Finding correspondences between two surfaces is a fundamental operation in various applications in computer graphics and related fields. Candidate correspondences can be found by matching local signatures, but as they only consider local geometry, many are globally inconsistent. We provide a novel algorithm to prune a set of candidate correspondences to those most likely to be globally consistent. Our approach can handle articulated surfaces, and ones related by a deformation which is globally non-isometric, provided that the deformation is locally approximately isometric. Our approach uses an efficient diffusion framework, and only requires geodesic distance calculations in small neighbourhoods, unlike many existing techniques which require computation of global geodesic distances. We demonstrate that, for typical examples, our approach provides significant improvements in accuracy, yet also reduces time and memory costs by a factor of several hundred compared to existing pruning techniques. Our method is furthermore insensitive to holes, unlike many other methods.
There is an increasing interest in applying deep learning to 3D mesh segmentation. We observe that 1) existing feature-based techniques are often slow or sensitive to feature resizing, 2) there are minimal comparative studies and 3) techniques often suffer from reproducibility issue. This study contributes in two ways. First, we propose a novel convolutional neural network (CNN) for mesh segmentation. It uses 1D data, filters and a multi-branch architecture for separate training of multi-scale features. Together with a novel way of computing conformal factor (CF), our technique clearly out-performs existing work. Secondly, we publicly provide implementations of several deep learning techniques, namely, neural networks (NNs), autoencoders (AEs) and CNNs, whose architectures are at least two layers deep. The significance of this study is that it proposes a robust form of CF, offers a novel and accurate CNN technique, and a comprehensive study of several deep learning techniques for baseline comparison.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.