The genome sequence of the solvent-producing bacterium Clostridium acetobutylicum ATCC 824 has been determined by the shotgun approach. The genome consists of a 3.94-Mb chromosome and a 192-kb megaplasmid that contains the majority of genes responsible for solvent production. Comparison of C. acetobutylicum to Bacillus subtilis reveals significant local conservation of gene order, which has not been seen in comparisons of other genomes with similar, or, in some cases closer, phylogenetic proximity. This conservation allows the prediction of many previously undetected operons in both bacteria. However, the C. acetobutylicum genome also contains a significant number of predicted operons that are shared with distantly related bacteria and archaea but not with B. subtilis. Phylogenetic analysis is compatible with the dissemination of such operons by horizontal transfer. The enzymes of the solventogenesis pathway and of the cellulosome of C. acetobutylicum comprise a new set of metabolic capacities not previously represented in the collection of complete genomes. These enzymes show a complex pattern of evolutionary affinities, emphasizing the role of lateral gene exchange in the evolution of the unique metabolic profile of the bacterium. Many of the sporulation genes identified in B. subtilis are missing in C. acetobutylicum, which suggests major differences in the sporulation process. Thus, comparative analysis reveals both significant conservation of the genome organization and pronounced differences in many systems that reflect unique adaptive strategies of the two gram-positive bacteria.
The nucleotide sequence of 1.5 Mb of genomic DNA from Mycobacterium leprae was determined using computer-assisted multiplex sequencing technology. This brings the 2.8-Mb M. leprae genome sequence to ∼66% completion. The sequences, derived from 43 recombinant cosmids, contain 1046 putative protein-coding genes, 44 repetitive regions, 3 rRNAs, and 15 tRNAs. The gene density of one per 1.4 kb is slightly lower than that of Mycoplasma (1.2 kb). Of the protein coding genes, 44% have significant matches to genes with well-defined functions. Comparison of 1157 M. leprae and 1564 Mycobacterium tuberculosis proteins shows a complex mosaic of homologous genomic blocks with up to 22 adjacent proteins in conserved map order. Matches to known enzymatic, antigenic, membrane, cell wall, cell division, multidrug resistance, and virulence proteins suggest therapeutic and vaccine targets. Unusual features of the M. leprae genome include large polyketide synthase (pks) operons, inteins, and highly fragmented pseudogenes.[The sequence data described in this paper have been submitted to GenBank under accession nos. L78811-L78829, U00010-U00023, U15180-U15184, U15186, U15187, L01095, L01536, L04666, and L01263. On-line supplementary information for Table 1 is available at http://www.cshl.org/gr.]Despite improved medical care and large vaccination programs, infectious organisms are still the leading cause of death, worldwide, and the pathogenic mycobacteria are among the worst offenders. There are estimated to be ∼5 million cases of leprosy, globally, while tuberculosis kills ∼3 million persons per year. The frequent occurrence of multidrug resistant Mycobacterium tuberculosis and the documented appearance of dapsone resistant Mycobacterium leprae are reminders that current therapies may not always be effective and that we should continue to search for and develop new antiinfective agents.M. leprae is one of the few bacterial pathogens that infects humans and cannot be cultivated outside of animals. The organism is an intracellular parasite that grows extremely slowly (generation
We describe a modified rRNA sequence analysis method which we used to determine the phylogenetic relationships among 58 species belonging to the genus Mycobacterium. We combined the sensitivity of the reverse transcriptase PCR for amplifying nanogram amounts of template rRNA material with the elevated extension temperatures used for the thermostable DNA polymerase from Thermus thermophilus. A 70°C reverse transcription extension step permitted improved read-through of highly structured rRNA templates from members of the genus Mycobacterium, which have G+C contents of 66 to 71 mol%. The nucleic acid sequences of the amplified material were then determined by performing thermal cycle sequencing with a-"P-labeled primers, again with extension at 70°C. Nonspecifically terminated bands were chased by using terminal deoxynucleotidyl transferase. Our method had a template requirement of nanogram amounts or less of purified RNA or 2,000 CFU of intact cells and had sufficient sensitivity so that lyophils obtained from the American Type Culture Collection could be used as source material. Sequences from a 250-nucleotide stretch of the 23s rRNA were aligned, and phylogenetic trees were evaluated by using the De Soete distance treeing algorithm and Rhodococcus bronchialis as the outgroup. Our 23s rRNA trees were compared with previously published 16s rRNA trees, including the comprehensive trees developed by the University of Illinois Ribosomal Database Project, and included 15 species not evaluated previously. Most of the groups were in general agreement and were consistent with relationships determined on the basis of biochemical characteristics, but some new relationships were also observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.