Electrophoresis of midgut extracts from the rice weevil, Sithopilus oryzae, and the red flour beetle, Tribolium castaneum, in polyacrylamide gels containing sodium dodecyl sulfate and gelatin revealed there was one major proteinase (apparent molecular mass = 40 000) in the rice weevil and two major proteinase (apparent molecular masses = 20 000 and 17 000) in the red flour beetle. The pH optima using [3PH]casein as substrate were about pH 6.8. for the rice weevil and pH 5.2 for the red flour beetle. Use of specific inhibitors, including L‐trans‐epoxysuccinyl‐leucylamino‐(4‐guanidino)‐butane (E‐64). p‐chloromercuriphenylsulfonic acid (PCMS), and oryzacystatin, indicated that nearly all of the proteinase activity against casein was contributed by cysteine proteinases. The estimated IC10 values for oryzacystatin were 2 × 10−6 M and 4 × 10−7 M when tested against midgut extracts from T. castaneum and S. oryzae, respectively.
Lepidoptera have been reported to produce several antibacterial peptides in response to septic injury. However, in marked contrast to other insect groups, no inducible antifungal molecules had been described so far in this insect order. Surprisingly, also cysteine-rich antimicrobial peptides, which predominate in the antimicrobial defense of other insects, had not been discovered in Lepidoptera. Here we report the isolation from the hemolymph of immune induced larvae of the lepidopteran Heliothis virescens of a cysteine-rich molecule with exclusive antifungal activity. We have fully characterized this antifungal molecule, which has significant homology with the insect defensins, a large family of antibacterial peptides directed against Gram-positive strains. Interestingly, the novel peptide shows also similarities with the antifungal peptide drosomycin from Drosophila.Thus, Lepidoptera appear to have built their humoral immune response against bacteria on cecropins and attacins. In addition, we report that Lepidoptera have conferred antifungal properties to the well conserved structure of antibacterial insect defensins through amino acid replacements.
Recent studies using simple model systems have demonstrated that Continuous Countercurrent Tangential Chromatography (CCTC) has the potential to overcome many of the limitations of conventional Protein A chromatography using packed columns. The objective of this work was to optimize and implement a CCTC system for monoclonal antibody purification from clarified Chinese Hamster Ovary (CHO) cell culture fluid using a commercial Protein A resin. Several improvements were introduced to the previous CCTC system including the use of retentate pumps to maintain stable resin concentrations in the flowing slurry, the elimination of a slurry holding tank to improve productivity, and the introduction of an “after binder” to the binding step to increase antibody recovery. A kinetic binding model was developed to estimate the required residence times in the multi-stage binding step to optimize yield and productivity. Data were obtained by purifying two commercial antibodies from two different manufactures, one with low titer (~0.67 g/L) and one with high titer (~6.9 g/L), demonstrating the versatility of the CCTC system. Host cell protein removal, antibody yields and purities were similar to that obtained with conventional column chromatography; however, the CCTC system showed much higher productivity. These results clearly demonstrate the capabilities of continuous countercurrent tangential chromatography for the commercial purification of monoclonal antibody products.
HPLC with electrochemical detection was used to determine the levels of p-hydroxyphenylethanolamine (octopamine), 3,4-dihydroxyphenylethylamine (dopamine), and 5-hydroxytryptamine (5-HT) in the brains of control, reserpine, and d-amphetamine-treated blow flies, Phormia regina Meigen. Parallel studies were carried out to assess the effects of the two drugs on fly feeding behavior, measured as mean acceptance threshold: the minimum sucrose concentration to which the average fly in a population will respond by proboscis extension when its tarsi contact the solution. In saline-injected control flies, all three amines were found at levels of approximately 2 pmol/brain. Thirty minutes after injection with d-amphetamine (12 micrograms/fly), brain octopamine was depleted by 85%, whereas dopamine and 5-HT were depleted by 70%. Reserpine (5 micrograms/fly) caused 70% depletion of dopamine and greater than 90% depletion of both octopamine and 5-HT 24 h after injection. However, the effect of reserpine was much slower in onset (hours versus minutes) and more persistent (days versus hours) than was the effect of d-amphetamine. With either drug, the time course of amine depletion closely matched the time course of the increase in feeding threshold observed in drug-treated flies. These results suggest that CNS pools of the biogenic amines, octopamine, dopamine, and 5-HT are important in governing blow fly responsiveness to food stimuli.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.