To determine the influence of time from injury to surgery on neurological recovery and length of stay (LOS) in an observational cohort of individuals with traumatic spinal cord injury (tSCI), we analyzed the baseline and follow-up motor scores of participants in the Rick Hansen Spinal Cord Injury Registry to specifically assess the effect of an early (less than 24 h from injury) surgical procedure on motor recovery and on LOS. One thousand four hundred and ten patients who sustained acute tSCIs with baseline American Spinal Injury Association Impairment Scale (AIS) grades A, B, C, or D and were treated surgically were analyzed to determine the effect of the timing of surgery (24, 48, or 72 h from injury) on motor recovery and LOS. Depending on the distribution of data, we used different types of generalized linear models, including multiple linear regression, gamma regression, and negative binomial regression. Persons with incomplete AIS B, C, and D injuries from C2 to L2 demonstrated motor recovery improvement of an additional 6.3 motor points (SE=2.8 p<0.03) when they underwent surgical treatment within 24 h from the time of injury, compared with those who had surgery later than 24 h post-injury. This beneficial effect of early surgery on motor recovery was not seen in the patients with AIS A complete SCI. AIS A and B patients who received early surgery experienced shorter hospital LOS. While the issues of when to perform surgery and what specific operation to perform remain controversial, this work provides evidence that for an incomplete acute tSCI in the cervical, thoracic, or thoracolumbar spine, surgery performed within 24 h from injury improves motor neurological recovery. Early surgery also reduces LOS.
In prior analyses of the effectiveness of methylprednisolone for the treatment of patients with acute traumatic spinal cord injuries (TSCIs), the prognostic importance of patients' neurological levels of injury and their baseline severity of impairment has not been considered. Our objective was to determine whether methylprednisolone improved motor recovery among participants in the Rick Hansen Spinal Cord Injury Registry (RHSCIR).We identified RHSCIR participants who received methylprednisolone according to the Second National Spinal Cord Injury Study (NASCIS-II) protocol and used propensity score matching to account for age, sex, time of neurological exam, varying neurological level of injury, and baseline severity of neurological impairment. We compared changes in total, upper extremity, and lower extremity motor scores using the Wilcoxon signed-rank test and performed sensitivity analyses using negative binomial regression.Forty-six patients received methylprednisolone and 1555 received no steroid treatment. There were no significant differences between matched participants for each of total (13.7 vs. 14.1, respectively; p=0.43), upper extremity (7.3 vs. 6.4; p=0.38), and lower extremity (6.5 vs. 7.7; p=0.40) motor recovery. This result was confirmed using a multivariate model and, as predicted, only cervical (C1–T1) rather than thoracolumbar (T2–L3) injury levels (p<0.01) and reduced baseline injury severity (American Spinal Injury Association [ASIA] Impairment Scale grades; p<0.01) were associated with greater motor score recovery. There was no in-hospital mortality in either group; however, the NASCIS-II methylprednisolone group had a significantly higher rate of total complications (61% vs. 36%; p=0.02)NASCIS-II methylprednisolone did not improve motor score recovery in RHSCIR patients with acute TSCIs in either the cervical or thoracic spine when the influence of anatomical level and severity of injury were included in the analysis. There was a significantly higher rate of total complications in the NASCIS-II methylprednisolone group. These findings support guideline recommendations against routine administration of methylprednisolone in acute TSCI.
Maintaining health and well-being in people with tSCI demands access to both conventional health care and support services. Implications for Rehabilitation Access to both health and support services are important to maintaining the health and wellness of people with spinal cord injury. People with spinal cord injuries take an active role in coordinating their health, at times assuming various roles to compensate for perceived shortcomings of health care providers. Negotiating balances of power with gatekeepers in the health and insurance sectors was a key function of the coordinating role assumed by people with spinal cord injury. In order to effectively address the needs of this population, a coordinated interdisciplinary out-reach service, which includes peer support, must cross boundaries to engage sectors beyond traditional health care services, such as insurers and wellness providers.
Clinical trials of therapies for acute traumatic spinal cord injury (tSCI) have failed to convincingly demonstrate efficacy in improving neurologic function. Failing to acknowledge the heterogeneity of these injuries and under-appreciating the impact of the most important baseline prognostic variables likely contributes to this translational failure. Our hypothesis was that neurological level and severity of initial injury (measured by the American Spinal Injury Association Impairment Scale [AIS]) act jointly and are the major determinants of motor recovery. Our objective was to quantify the influence of these variables when considered together on early motor score recovery following acute tSCI. Eight hundred thirty-six participants from the Rick Hansen Spinal Cord Injury Registry were analyzed for motor score improvement from baseline to follow-up. In AIS A, B, and C patients, cervical and thoracic injuries displayed significantly different motor score recovery. AIS A patients with thoracic (T2-T10) and thoracolumbar (T11-L2) injuries had significantly different motor improvement. High (C1-C4) and low (C5-T1) cervical injuries demonstrated differences in upper extremity motor recovery in AIS B, C, and D.A hypothetical clinical trial example demonstrated the benefits of stratifying on neurological level and severity of injury. Clinically meaningful motor score recovery is predictably related to the neurological level of injury and the severity of the baseline neurological impairment. Stratifying clinical trial cohorts using a joint distribution of these two variables will enhance a study's chance of identifying a true treatment effect and minimize the risk of misattributed treatment effects. Clinical studies should stratify participants based on these factors and record the number of participants and their mean baseline motor scores for each category of this joint distribution as part of the reporting of participant characteristics. Improved clinical trial design is a high priority as new therapies and interventions for tSCI emerge.
Complex interactions and enduring effects of health conditions after SCI have a negative effect on function, HRQoL, and life satisfaction. Modeling relations among these types of concepts will inform clinicians how to positively effect outcomes after SCI (eg, development of screening tools and protocols for managing individuals with traumatic SCI who have multiple health conditions).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.