This paper presents a review of existing theory and practice relating to main bearings for wind turbines. The main bearing performs the critical role of supporting the turbine rotor, with replacements typically requiring its complete removal. The operational conditions and loading for wind turbine main bearings deviate significantly from those of more conventional power plants and other bearings present in the wind turbine power train, i.e. those in the gearbox and generator. This work seeks to thoroughly document current main-bearing theory in order to allow for appraisal of existing design and analysis practices, while also seeking to form a solid foundation for future research in this area. The most common main-bearing setups are presented along with standards for bearing selection and rating. Typical loads generated by a wind turbine rotor, and subsequently reacted at the main bearing, are discussed. This is followed by the related tribological theories of lubrication, wear and associated failure mechanisms. Finally, existing techniques for bearing modelling, fault diagnosis and prognosis relevant to the main bearing are presented.Published by Copernicus Publications on behalf of the European Academy of Wind Energy e.V.
Fully flooded lubrication is the ideal state for a rolling bearing; this is especially true in the aggressive environment of a wind turbine transmission where bearings are subject to intermittent operation and highly variable loading. In this paper, a novel ultrasonic reflection method is used to detect the presence of oil between rollers in the bearing. Ultrasonic sensors were instrumented on the static inner (lab) and outer (field) bearing raceways and reflections were captured as the rollers travelled past the sensor. The proportion of the sound wave reflected (known as the reflection coefficient, R) is dependent on the acoustic mismatch of the materials either side of the interface. Changes in R indicate either a steel–air or steel–oil interface as R values transitioned from 1 to 0.95, respectively, and even lower for a steel–roller interface. Consequently, it was possible to detect the presence of lubricant on the raceway between roller passes. From the laboratory measurements, the recurring reflection coefficient patterns between roller passes were used to identify the lubrication condition of the raceway. An absence of these patterns between roller passes indicated the absence of lubricant on the bearing surface. For the field measurements, three bearing lubrication conditions (partial, insufficient, and fully lubricated) were observed. Partially and insufficiently lubricated datasets were found to occur mostly during transient operation. As transient operation is often accompanied by overloading and torque reversals, coupled with the lubrication issues, these all act to increase the risk of premature bearing failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.