The role played by chronic episodic hypoxia (EHYP) in the neurocognitive morbidity of obstructive sleep apnea (OSA) is unknown. Sleep recordings, Morris water maze experiments, and immunohistochemistry for NMDA NR1 glutamate receptor, c-fos protein, and apoptosis [nuclear immunoreactivity for single-stranded DNA and terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling assay] were conducted in EHYP-exposed Sprague Dawley male rats. Exposures consisted of up to14 d in an environmental chamber in which O 2 concentrations were cycled between 10 and 21% every 90 sec or 30 min during 12 hr of daylight. For the remaining 12 hr, EHYP rats breathed room air, while controls spent 14 d in room air. Although EHYP induced significant disruption of sleep architecture during the initial day of exposure, sleep patterns normalized thereafter. Marked increases in apoptosis occurred in the CA1 hippocampal region (sevenfold) and cortex (Cx; eightfold) after 1-2 d of EHYP but not in CA3 and were followed by decreases toward normoxic levels by 14 d. Double labeling for NMDA NR1 and c-fos revealed marked architectural disorganization in CA1 and Cx with increases in c-fos over time. Rats exposed to EHYP displayed significantly longer escape latencies and swim path lengths to escape a hidden platform during 12 training trials given over 2 d. Differences in the performances of EHYP and control rats, although reduced, persisted after 14 d of recovery. We conclude that EHYP is associated with marked cellular changes over time within neural regions associated with cognitive functions. Furthermore, EHYP impaired performance during acquisition of a cognitive spatial task without affecting sensorimotor function. Such changes may underlie components of the learning and memory impairments found in OSA.
Elevated levels of circulating estrogen in female rats result in increased spine and synapse density and parallel increases in NMDA receptor binding in area CA1 of the hippocampus. Estrogen also influences cholinergic neurochemistry in the basal forebrain and hippocampus. The objectives of the present study were to determine the role of acetylcholine in the estrogen-induced increase in NMDA receptor binding in CA1 of the hippocampus and to investigate the relationship between increased NMDA receptor binding in CA1 and performance on a task of working memory. In the current experiments, elevating endogenous levels of acetylcholine in ovariectomized rats by 3 d of continuous administration of physostigmine, an acetylcholinesterase inhibitor, increased NMDA receptor binding in CA1 as measured by quantitative autoradiography. This increase was comparable with the increase in NMDA receptor binding induced by injections of estradiol benzoate 72 and 48 hr before death. Additionally, the administration of 5,11-dihydro-8-chloro-11-[[4-[3-[(2,2-dimethyl-1-oxopentyl)ethylamino]propyl]-1-piperidinyl]acetyl]-6H-pyrido[2,3-b][1,4]benzodiazepin-6-one (BIBN 99), an M2 receptor antagonist, blocked the ability of both estrogen and physostigmine to increase NMDA receptor binding. The regimen of estradiol replacement that was demonstrated to increase NMDA receptor binding in CA1 of ovariectomized rats also improved arm-choice accuracy in a working memory task in an eight-arm radial maze. The estrogen-induced improvement in working memory performance was blocked by BIBN 99, which also blocked the increase in NMDA receptor binding. These results indicate that acetylcholine acts at M2 muscarinic receptors to mediate the estrogen-induced increase in NMDA receptor binding in CA1 of the hippocampus as well as the associated improvement in working memory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.