The 'ODD' (Overview, Design concepts, and Details) protocol was published in 2006 to standardize the published descriptions of individual-based and agent-based models (ABMs). The primary objectives of ODD are to make model descriptions more understandable and complete, thereby making ABMs less subject to criticism for being irreproducible. We have systematically evaluated existing uses of the ODD protocol and identified, as expected, parts of ODD needing improvement and clarification. Accordingly, we revise the definition of ODD to clarify aspects of the original version and thereby facilitate future standardization of ABM descriptions. We discuss frequently raised critiques in ODD but also two emerging, and unanticipated, benefits: ODD improves the rigorous formulation of models and helps make the theoretical foundations of large models more visible. Although the protocol was designed for ABMs, it can help with documenting any large, complex model, alleviating some general objections against such models.
The Overview, Design concepts and Details (ODD) protocol for describing Individual-and Agent-Based Models (ABMs) is now widely accepted and used to document such models in journal articles. As a standardized document for providing a consistent, logical and readable account of the structure and dynamics of ABMs, some research groups also find it useful as a workflow for model design. Even so, there are still limitations to ODD that obstruct its more widespread adoption. Such limitations are discussed and addressed in this paper: the limited availability of guidance on how to use ODD; the length of ODD documents; limitations of ODD for highly complex models; lack of su icient details of many ODDs to enable reimplementation without access to the model code; and the lack of provision for sections in the document structure covering model design rationale, the model's underlying narrative, and the means by which the model's fitness for purpose is evaluated. We document the steps we have taken to provide better guidance on: structuring complex ODDs and an ODD summary for inclusion in a journal article (with full details in supplementary material; Table ); using ODD to JASSS, ( ) , http://jasss.soc.surrey.ac.uk/ / / .html Doi: . /jasss.point readers to relevant sections of the model code; update the document structure to include sections on model rationale and evaluation. We also further advocate the need for standard descriptions of simulation experiments and argue that ODD can in principle be used for any type of simulation model. Thereby ODD would provide a lingua franca for simulation modelling.
The proliferation of agent-based models (ABMs) in recent decades has motivated model practitioners to improve the transparency, replicability, and trust in results derived from ABMs. The complexity of ABMs has risen in stride with advances in computing power and resources, resulting in larger models with complex interactions and learning and whose outputs are often high-dimensional and require sophisticated analytical approaches. Similarly, the increasing use of data and dynamics in ABMs has further enhanced the complexity of their outputs. In this article, we offer an overview of the state-of-the-art approaches in analysing and reporting ABM outputs highlighting challenges and outstanding issues. In particular, we examine issues surrounding variance stability (in connection with determination of appropriate number of runs and hypothesis testing), sensitivity analysis, spatio-temporal analysis, visualization, and effective communication of all these to non-technical audiences, such as various stakeholders.
The COVID-pandemic is causing a dramatic loss of lives worldwide, challenging the sustainability of our health care systems, threatening economic meltdown, and putting pressure on the mental health of individuals (due to social distancing and lock-down measures). The pandemic is also posing severe challenges to the scientific community, with scholars under pressure to respond to policymakers' demands for advice despite the absence of adequate, trusted data. Understanding the pandemic requires fine-grained data representing specific local conditions and the social reactions of individuals. While experts have built simulation models to estimate disease trajectories that may be enough to guide decision-makers to formulate policy measures to limit the epidemic, they do not cover the full behavioural and social complexity of societies under pandemic crisis. Modelling that has such a large potential impact upon people's lives is a great responsibility. This paper calls on the scientific community to improve the transparency, access, and rigour of their models. It also calls on stakeholders to improve the rapidity with which data from trusted sources are released to the community (in a fully responsible manner). Responding to the pandemic is a stress test of our collaborative capacity and the social/economic value of research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.