It has been envisioned that a body network can be built to collect data from, and transport information to, implanted miniature devices at multiple sites within the human body. Currently, two problems of utmost importance remain unsolved: 1) how to link information between a pair of implants at a distance? and 2) how to provide electric power to these implants allowing them to function and communicate? In this paper, we present new solutions to these problems by minimizing the intra-body communication distances. We show that, based on a study of human anatomy, the maximum distance from the body surface to the deepest point inside the body is approximately 15 cm. This finding provides an upper bound for the lengths of communication pathways required to reach the body's interior. We also show that these pathways do not have to cross any joins within the body. In order to implement the envisioned body network, we present the design of a new device, called an energy pad. This small-size, light-weight device can easily interface with the skin to perform data communication with, and supply power to, miniature implants.
Current practice for the detection of chemical, biological and explosive (CBE) agent contamination on environmental surfaces requires a human to don protective gear, manually take a sample and then package it for subsequent laboratory analysis. Ground robotics now provides an operator-safe way to make these critical measurements. We describe the development of a robot-deployed surface detection system for CBE agents that does not require the use of antibodies or DNA primers. The detector is based on Raman spectroscopy, a reagentless technique that has the ability to simultaneously identify multiple chemical and biological hazards. Preliminary testing showed the ability to identify CBE simulants in 10 minutes or less. In an operator-blind study, this detector was able to correctly identify the presence of trace explosive on weathered automobile body panels. This detector was successfully integrated on a highly agile robot platform capable of both high speed and rough terrain operation. The detector is mounted to the end of five-axis arm that allows precise interrogation of the environmental surfaces. The robot, arm and Raman detector are JAUS compliant, and are controlled via a radio link from a single operator control unit. Results from the integration testing and from limited field trials are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.