Several versatile, multi-copy, promoter-probe plasmid vectors have been constructed that replicate in a wide range of Streptomyces species. Transcriptional activity is detected by the expression of a promoter-less aminoglycoside phosphotransferase gene (neo) derived from the transposon Tn5; expression of this gene confers kanamycin and neomycin resistance on Streptomyces lividans. An efficient transcriptional terminator from E. coli phage fd has been inserted upstream of the neo coding region to prevent significant transcriptional read-through from vector promoters. A translational stop codon situated downstream from the site(s) used for cloning and preceding and in frame with the ATG start codon of the neo gene ensures the detection of transcriptional, rather than translational, fusions. Relative promoter strengths can be determined by gradient plate assays of kanamycin resistance, by measuring the amount of aminoglycoside phosphotransferase produced or by estimating neo mRNA synthesised. The high copy number of the vectors facilitates the rapid isolation and characterisation of promoter-active fragments and convenient restriction sites are available for DNA sequencing and S1 mapping of cloned inserts. Some derivatives contain a polylinker that facilitates the insertion, excision and analysis of cloned fragments and which enhances the use of these plasmids as general cloning vectors.
The prokaryotic ribosome is an important target of antibiotic action. We determined the X-ray structure of the aminoglycoside kasugamycin (Ksg) in complex with the Escherichia coli 70S ribosome at 3.5-Å resolution. The structure reveals that the drug binds within the messenger RNA channel of the 30S subunit between the universally conserved G926 and A794 nucleotides in 16S ribosomal RNA, which are sites of Ksg resistance. To our surprise, Ksg resistance mutations do not inhibit binding of the drug to the ribosome. The present structural and biochemical results indicate that inhibition by Ksg and Ksg resistance are closely linked to the structure of the mRNA at the junction of the peptidyl-tRNA and exit-tRNA sites (P and E sites).Translation initiation is the rate-limiting step of protein synthesis and is a central target for the global regulation of gene expression 1 . In bacteria, modulation of translation initiation has been attributed to sequences and secondary structures within mRNAs. These include the strength of the Shine-Dalgarno (SD) sequence, the identity of the initiation codon, the presence or absence of secondary structures in the 5′ leader sequence and the presence of A/U-rich sequences recognized by ribosomal protein S1 (refs. 2 ,3 ). However, the role of the sequence between the SD and the initiation codon remains unclear, despite reports showing large effects of this region on gene expression 2,4,5 . This stretch of mRNA traverses the universally conserved ribosomal E site within the 30S subunit during initiation 6,7 .The aminoglycoside Ksg has been reported to inhibit initiation of translation by blocking initiator transfer RNA binding to the 30S subunit 8-12 . Ksg is produced by the bacterium Streptomyces kasugaensis 13 and has been used clinically in the treatment of Pseudomonas aeruginosa infections 14 . The antibiotic is currently used in the treatment of the fungus Pyricularia oryzae in rice fields 13 .
Transcriptional analysis of the ermE gene of Saccharopolyspora erythraea, which confers resistance to erythromycin by N6-dimethylation of 23S rRNA and which is expressed from two promoters, ermEp1 and ermEp2, revealed a complex regulatory region in which transcription is initiated in a divergent and overlapping manner. Two promoters (eryC1p1 and eryC1p2) were identified for the divergently transcribed erythromycin biosynthetic gene eryC1, which plays a role in the formation of desosamine or its attachment to the macrolide ring. Transcription from eryC1p2 starts at the same position as that of ermEp1, but on the opposite strand of the DNA helix, suggesting co-ordinate regulation of genes for erythromycin production and resistance. ermEp1 initiates transcription at, and one nucleotide before, the ermE translational start codon. Site-directed and deletion mutagenesis, combined with immunochemical analysis, demonstrated that the ermEp1 transcript is translated in the absence of a conventional ribosome-binding site to give rise to the full-length 23S rRNA methylase. Deletion of the -35 region of ermEp1 reduced, but did not abolish, promoter activity, reminiscent of the 'extended -10' class of bacterial promoters which, like ermEp1, possess TGN motifs immediately upstream of their -10 regions and which initiate transcription seven nucleotides downstream of the -10 region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.