We study the photon-statistical behavior of resonance fluorescence from self-assembled InAs quantum dots (QDs) as a function of the density of free charge carriers introduced by an above band-gap laser. Second-order correlation measurements show bunching behavior that changes with aboveband laser power and is absent in purely above-band excited emission. Resonant photoluminescence excitation spectra indicate that the QD experiences discrete spectral shifts and continuous drift due to changes in the local charge environment. These spectral changes, combined with tunneling of charges from the environment to the QD, provide an explanation of the bunching observed in the correlations.
The ability to perform simultaneous resonant excitation and fluorescence detection is important for quantum optical measurements of quantum dots (QDs). Resonant excitation without fluorescence detection - for example, a differential transmission measurement - can determine some properties of the emitting system, but does not allow applications or measurements based on the emitted photons. For example, the measurement of photon correlations, observation of the Mollow triplet, and realization of single photon sources all require collection of the fluorescence. Incoherent excitation with fluorescence detection - for example, above band-gap excitation - can be used to create single photon sources, but the disturbance of the environment due to the excitation reduces the indistinguishability of the photons. Single photon sources based on QDs will have to be resonantly excited to have high photon indistinguishability, and simultaneous collection of the photons will be necessary to make use of them. We demonstrate a method to resonantly excite a single QD embedded in a planar cavity by coupling the excitation beam into this cavity from the cleaved face of the sample while collecting the fluorescence along the sample's surface normal direction. By carefully matching the excitation beam to the waveguide mode of the cavity, the excitation light can couple into the cavity and interact with the QD. The scattered photons can couple to the Fabry-Perot mode of the cavity and escape in the surface normal direction. This method allows complete freedom in the detection polarization, but the excitation polarization is restricted by the propagation direction of the excitation beam. The fluorescence from the wetting layer provides a guide to align the collection path with respect to the excitation beam. The orthogonality of the excitation and detection modes enables resonant excitation of a single QD with negligible laser scattering background.
We present an ab-initio investigation of the structural, electronic, and optical properties of substitutional nitrogen doping of a-TiO 2 . Through observation of multiple N-doped amorphous structures, we find additional localized tail states within the band gap. Some structures show these states nearly 1 eV above the valence band, while most structures show these states very close to the valence band edge. We also observe a general trend of increasing cohesive energy with increasing distance between nitrogen impurities, suggesting the tendency for nitrogen to form localized clusters within the material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.