Fourteen mild-to-moderate asthmatic patients completed a randomized four-way crossover scintigraphic study to determine the lung deposition of 200 microg budesonide inhaled from a Respimat Soft Mist Inhaler (Respimat SMI), 200 microg budesonide inhaled from a Turbuhaler dry powder inhaler (Turbuhaler DPI, used with fast and slow peak inhaled flow rates), and 250 microg beclomethasone dipropionate inhaled from a pressurized metered dose inhaler (Becloforte pMDI). Mean (range) whole lung deposition of drug from the Respimat SMI (51.6 [46-57]% of the metered dose) was significantly (p < 0.001) greater than that from the Turbuhaler DPI used with both fast and slow inhaled flow rates (28.5 [24-33]% and 17.8 [14-22]%, respectively) or from the Becloforte pMDI (8.9 [6-12]%). The deposition pattern within the lungs was more peripheral for Respimat SMI than for Turbuhaler DPI. The results of this study showed that Respimat SMI deposited corticosteroid more efficiently in the lungs than either of two widely used inhaler devices, Turbuhaler DPI or Becloforte pMDI.
Chlorofluorocarbons (CFCs), used in metered dose inhalers (MDIs), have been identified as being deleterious to the environment leading to a ban on their production. Dry powder inhalers (DPIs) are a widely used alternative to MDIs. One disadvantage of DPIs is that in vivo lung deposition can be influenced by the patient's inspiratory flow rate. The ASTA Medica multi-dose dry powder inhaler (AM-MDPI) has been designed to offer low resistance on inhalation, so that asthmatic patients can achieve inhaled flow rates of~90 L . min -1 . The aim of the study was to evaluate the in vivo deposition of budesonide from the AM-MDPI at different flow rates and to compare this with delivery from a Turbuhaler DPI at a high flow rate. The study was a scintigraphic, randomized, crossover study in which 13 healthy volunteers inhaled a single 200 mg dose of radiolabelled budesonide on four separate occasions with a minimum 44-h washout period between dosings.At the lowest flow rate of 54 L . min -1 , comparable to that for the Turbuhaler (58 L . min ) the AM-MDPI delivered significantly more drug to the lung (median 32.1% of metered dose) than at 65 L . min -1 or 54 L . min -1 (median 25.0% and 19.9% of metered dose, respectively), thus demonstrating flow rate dependence. The pattern of regional lung deposition from the AM-MDPI was similar for all three inhalation manoeuvres.It was concluded that the ASTA Medica multi-dose dry powder inhaler achieves at least as much deposition of budesonide in the lungs as a Turbuhaler when used at similar inspiratory flow rates. Eur Respir J 2000; 16: 178±183.
This March 2009 Workshop Summary Report was sponsored by Product Quality Research Institute (PQRI) based on a proposal by the Inhalation and Nasal Technology Focus Group (INTFG) of the American Association of Pharmaceutical Scientists (AAPS). Participants from the pharmaceutical industry, academia and regulatory bodies from the United States, Europe, India, and Brazil attended the workshop with the objective of presenting, reviewing, and discussing recommendations for demonstrating bioequivalence (BE) that may be considered in the development of orally inhaled drug products and regulatory guidances for new drug applications (NDAs), abbreviated NDAs (ANDAs), and postapproval changes. The workshop addressed areas related to in vitro approaches to demonstrating BE, biomarker strategies, imaging techniques, in vivo approaches to establishing local delivery equivalence and device design similarity. The workshop presented material that provided a baseline for the current understanding of orally inhaled drug products (OIPs) and identified gaps in knowledge and consensus that, if answered, might allow the design of a robust, streamlined method for the BE assessment of locally acting inhalation drugs. These included the following: (1) cascade impactor (CI) studies are not a good 2 predictor of the pulmonary dose; more detailed studies on in vitro/in vivo correlations (e.g., suitability of CI studies for assessing differences in the regional deposition) are needed; (2) there is a lack of consensus on the appropriate statistical methods for assessing in vitro results; (3) fully validated and standardized imaging methods, while capable of providing information on pulmonary dose and regional deposition, might not be applicable to the BE of inhaled products mainly due to the problems of having access to radiolabeled innovator product; (4) if alternatives to current methods for establishing local delivery BE of OIPs cannot be established, biomarkers (pharmacodynamic or clinical endpoints) with a sufficiently steep dose-response need to be identified and validated for all relevant drug classes; and (5) the utility of pharmacokinetic studies for evaluating "local pulmonary delivery" equivalence deserves more attention. A summary of action items for seminars and working groups to address these topics in the future is also presented.
Drugs are given intranasally for both local and systemic applications, and the use of the intranasal route is predicted to rise dramatically in the next 10 years. Nasal drug delivery may be assessed by a variety of means, but high reliance is often placed upon in vitro testing methodology (emitted dose, droplet or particle size distribution, spray pattern, and plume geometry). Spray pattern and plume geometry define the shape of the expanding aerosol cloud, while droplet size determines the likelihood of deposition within the nasal cavity by inertial impaction. Current FDA guidance recommends these methods as a means of documenting bioavailability (BA) and bioequivalence (BE) for topically acting solution formulations, because they can be performed reproducibly and are more discriminating among products. Nasal drug delivery in vivo may be determined by several radionuclide imaging methods: the two-dimensional imaging technique of gamma scintigraphy has been used most widely, but the three-dimensional method of positron emission tomography (PET) is being used increasingly often. In some situations a good in vitro/in vivo correlation (IVIVC) exists; for instance, negligible penetration into the lungs has been demonstrated in the case of nasal pump sprays delivering large droplets, while a clear difference may be shown in intranasal deposition between two aerosols with markedly different size distributions. However, recent studies have shown a poorer IVIVC for two similar nasal pump sprays, where significant differences in in vitro parameters were not reflected in differences in nasal deposition in vivo. It is suggested that radionuclide imaging data may have an important role to play as an adjunct to in vitro testing in BA and BE assessments and may provide a clearer understanding of the changes in in vitro parameters that are important for predicting differences in in vivo performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.