The emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus responsible for the coronavirus disease 2019 (COVID-19) pandemic has raised concerns for programs overseeing donation and transplantation of cells, tissues, and organs (CTO) that this virus might be transmissible by transfusion or transplantation. Transplant recipients are considered particularly vulnerable to pathogens because of immunosuppression, and SARS-CoV-2 is likely to generate complications if contracted. Several signs and symptoms observed in COVID-19 positive patients reflect damage to multiple organs and tissues, raising the possibility of extrapulmonary SARS-CoV-2 infections and risk of transmission. At the beginning of the pandemic, a consensus has emerged not to consider COVID-19 positive patients as potential living or deceased donors, resulting in a global decrease in transplantation procedures. Medical decision-making at the time of organ allocation must consider safely alongside the survival advantages offered by transplantation. To address the risk of transmission by transplantation, this review summarizes the published cases of transplantation of cells or organs from donors infected with SARS-CoV-2 until January 2021 and assesses the current state of knowledge for the detection of this virus in different biologic specimens, cells, tissues, and organs. Evidence collected to date raises the possibility of SARS-CoV-2 infection and replication in some CTO, which makes it impossible to exclude transmission through transplantation. However, most studies focused on evaluating transmission under laboratory conditions with inconsistent findings, rendering the comparison of results difficult. Improved standardization of donors and CTO screening practices, along with a systematic follow-up of transplant recipients could facilitate the assessment of SARS-CoV-2 transmission risk by transplantation.
For successful transplantation, allografts should be free of microorganisms that may cause harm to the allograft recipient. Before or during recovery and subsequent processing, tissues can become contaminated. Effective tissue recovery methods, such as minimizing recovery times (<24 h after death) and the number of experienced personnel performing recovery, are examples of factors that can affect the rate of tissue contamination at recovery. Additional factors, such as minimizing the time after asystole to recovery and the total time it takes to perform recovery, the type of recovery site, the efficacy of the skin prep performed immediately prior to recovery of tissue, and certain technical recovery procedures may also result in control of the rate of contamination. Due to the heterogeneity of reported recovery practices and experiences, it cannot be concluded if the use of other barriers and/or hygienic precautions to avoid contamination have had an effect on bioburden detected after tissue recovery. Qualified studies are lacking which indicates a need exists for evidence-based data to support methods that reduce or control bioburden.Electronic supplementary materialThe online version of this article (doi:10.1007/s10561-016-9590-5) contains supplementary material, which is available to authorized users.
Canada's federal, provincial, and territorial governments gave Canadian Blood Services a mandate for organ and tissue donation and transplantation, including system performance, data and analytics. In 2012 Canadian Blood Services facilitated an eye and tissue banking workshop focused on standardized specifications and practices. At the workshop, the Canadian tissue community directed Canadian Blood Services to facilitate the development and implementation of a national data stream and analytics. Prior to this no national data was prospectively collected or collated on tissue donation, production or distribution activity. An eye and tissue data committee was formed with representation from eye and tissue banks in all Canadian jurisdictions. A minimum data set, standardized definitions, a data submission form and a quality assurance process was developed. Training was provided to data personal identified by each eye and tissue bank. Data collection was initiated January 1, 2013; with quarterly data submitted to Canadian Blood Services via excel spreadsheet. Data was submitted by sixteen Canadian eye and tissue banks, located in eight of Canada's thirteen provinces and territories, representing a census of activity. Annual data reports, with trend analysis, are generated and distributed to the tissue community to inform operational strategy and system performance improvement. This report provides an overview of the data process and provides visibility to the Canadian tissue donation, production and distribution activities for 3 years; January 1, 2013 to December 31, 2015.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.