The sulfonylurea receptor 1 (Sur1)-regulated NCCa-ATP channel is a nonselective cation channel that is regulated by intracellular calcium and adenosine triphosphate. The channel is not constitutively expressed, but is transcriptionally upregulated de novo in all cells of the neurovascular unit, in many forms of central nervous system (CNS) injury, including cerebral ischemia, traumatic brain injury (TBI), spinal cord injury (SCI), and subarachnoid hemorrhage (SAH). The channel is linked to microvascular dysfunction that manifests as edema formation and delayed secondary hemorrhage. Also implicated in oncotic cell swelling and oncotic (necrotic) cell death, the channel is a major molecular mechanism of ‘accidental necrotic cell death' in the CNS. In animal models of SCI, pharmacological inhibition of Sur1 by glibenclamide, as well as gene suppression of Abcc8, prevents delayed capillary fragmentation and tissue necrosis. In models of stroke and TBI, glibenclamide ameliorates edema, secondary hemorrhage, and tissue damage. In a model of SAH, glibenclamide attenuates the inflammatory response due to extravasated blood. Clinical trials of an intravenous formulation of glibenclamide in TBI and stroke underscore the importance of recent advances in understanding the role of the Sur1-regulated NCCa-ATP channel in acute ischemic, traumatic, and inflammatory injury to the CNS.
Cardiac hypertrophy is a complex process involving the coordinated actions of many genes. In a high throughput screen designed to identify transcripts that are actively translated during cardiac hypertrophy, we identified a number of genes with established links to hypertrophy, including those coding for Sp3, c-Jun, annexin II, cathepsin B, and HB-EGF, thus showing the general utility of the screen. Focusing on a candidate transcript that has not been previously linked to hypertrophy, we found that protein levels of the tumor suppressor PTEN (phosphatase and tensin homologue on chromosome ten) were increased in the absence of increased messenger RNA levels. Increased PTEN expression by recombinant adenovirus in cultured neonatal rat primary cardiomyocytes caused cardiomyocyte apoptosis as evidenced by increased caspase-3 activity and cleaved poly(A)DP-ribose polymerase. Expression of PTEN was also able to block growth factor signaling through the phosphatidylinositol 3,4,5-triphosphate pathway. Surprisingly, expression of a catalytically inactive PTEN mutant led to cardiomyocyte hypertrophy, with increased protein synthesis, cell surface area, and atrial natriuretic factor expression. This hypertrophy was accompanied by an increase in Akt activity and improved cell viability in culture.
In cervical traumatic spinal cord injury (TSCI), the therapeutic effect of timing of surgery on neurological recovery remains uncertain. Additionally, the relationship between extent of decompression, imaging biomarker evidence of injury severity, and outcome is incompletely understood. We investigated the effect of timing of decompression on long-term neurological outcome in patients with complete spinal cord decompression confirmed on postoperative magnetic resonance imaging (MRI). American Spinal Injury Association (ASIA) Impairment Scale (AIS) grade conversion was determined in 72 AIS grades A, B, and C patients 6 months after confirmed decompression. Thirty-two patients underwent decompressive surgery ultra-early (< 12 h), 25 underwent decompressive surgery early (12-24 h), and 15 underwent decompressive surgery late (> 24-138.5 h) after injury. Age, gender, injury mechanism, intramedullary lesion length (IMLL) on MRI, admission ASIA motor score, and surgical technique were not statistically different among groups. Motor complete patients (p = 0.009) and those with fracture dislocations (p = 0.01) tended to be operated on earlier. Improvement of one grade or more was present in 55.6% of AIS grade A, 60.9% of AIS grade B, and 86.4% of AIS grade C patients. Admission AIS motor score (p = 0.0004) and pre-operative IMLL (p = 0.00001) were the strongest predictors of neurological outcome. AIS grade improvement occurred in 65.6%, 60%, and 80% of patients who underwent decompression ultra-early, early, and late, respectively (p = 0.424). Multiple regression analysis revealed that IMLL was the only significant variable predictive of AIS grade conversion to a better grade (odds ratio, 0.908; confidence interval [CI], 0.862-0.957; p < 0.001). We conclude that in patients with post-operative MRI confirmation of complete decompression following cervical TSCI, pre-operative IMLL, not the timing of surgery, determines long-term neurological outcome.
Although decompressive surgery following traumatic spinal cord injury (TSCI) is recommended, adequate surgical decompression is rarely verified via imaging. We utilized magnetic resonance imaging (MRI) to analyze the rate of spinal cord decompression after surgery. Pre-operative (within 8 h of injury) and post-operative (within 48 h of injury) MRI images of 184 motor complete patients (American Spinal Injury Association Impairment Scale [AIS] grade A = 119, AIS grade B = 65) were reviewed to verify spinal cord decompression. Decompression was defined as the presence of a patent subarachnoid space around a swollen spinal cord. Of the 184 patients, 100 (54.3%) underwent anterior cervical discectomy and fusion (ACDF), and 53 of them also underwent laminectomy. Of the 184 patients, 55 (29.9%) underwent anterior cervical corpectomy and fusion (ACCF), with (26 patients) or without (29 patients) laminectomy. Twenty-nine patients (16%) underwent stand-alone laminectomy. Decompression was verified in 121 patients (66%). The rates of decompression in patients who underwent ACDF and ACCF without laminectomy were 46.8% and 58.6%, respectively. Among these patients, performing a laminectomy increased the rate of decompression (72% and 73.1% of patients, respectively). Twenty-five of 29 (86.2%) patients who underwent a stand-alone laminectomy were found to be successfully decompressed. The rates of decompression among patients who underwent laminectomy at one, two, three, four, or five levels were 58.3%, 68%, 78%, 80%, and 100%, respectively (p < 0.001). In multi-variate logistic regression analysis, only laminectomy was significantly associated with successful decompression (odds ratio 4.85; 95% confidence interval 2.2-10.6; p < 0.001). In motor complete TSCI patients, performing a laminectomy significantly increased the rate of successful spinal cord decompression, independent of whether anterior surgery was performed.
A forward-imaging needle-type optical coherence tomography (OCT) probe with Doppler OCT (DOCT) capability has the potential to solve critical challenges in interventional procedures. A case in point is stereotactic neurosurgery where probes are advanced into the brain based on predetermined coordinates. Laceration of blood vessels in front of the advancing probe is an unavoidable complication with current methods. Moreover, cerebrospinal fluid (CSF) leakage during surgery can shift the brain rendering the predetermined coordinates unreliable. In order to address these challenges, we developed a forward-imaging OCT probe (740 μm O.D.) using a gradient-index (GRIN) rod lens that can provide real-time imaging feedback for avoiding at-risk vessels (8 frames/s with 1024 A-scans per frame for OCT/DOCT dual imaging) and guiding the instrument to specific targets with 12 μm axial resolution (100 frames/s with 160 A-scans per frame for OCT imaging only). The high signal-to-background characteristic of DOCT provides exceptional sensitivity in detecting and quantifying the blood flow within the sheep brain parenchyma in real time. The OCT/DOCT dual imaging also demonstrated its capability to differentiate the vessel type (artery/vein) on rat's femoral vessels. We also demonstrated in ex vivo human brain that the location of the tip of the OCT probe can be inferred from micro-anatomical landmarks in OCT images. These findings demonstrate the suitability of OCT guidance during stereotactic procedures in the brain and its potential for reducing the risk of cerebral hemorrhage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.