This paper is drawn from the use of data envelopment analysis (DEA) in helping a Portuguese bank to manage the performance of its branches. The bank wanted to set targets for the branches on such variables as growth in number of clients, growth in funds deposited and so on. Such variables can take positive and negative values but apart from some exceptions, traditional DEA models have hitherto been restricted to non-negative data. We report on the development of a model to handle unrestricted data in a DEA framework and illustrate the use of this model on data from the bank concerned.
In some applications of Data Envelopment Analysis (DEA) there may be doubt as to whether all the DMUs form a single group with a common efficiency distribution. The Mann-Whitney rank statistic has been used to evaluate if two groups of DMUs come from a common efficiency distribution under the assumption of them sharing a common frontier and to test if the two groups have a common frontier. These procedures have subsequently been extended using the Kruskal-Wallis rank statistic to consider more than two groups. This paper identifies problems with the second of these applications of both the Mann-Whtney and Kruskal-Wallis rank statistics. It also considers possible alternative methods of testing if groups have a common frontier, and the difficulties of disaggregating managerial and programmatic efficiency within a non-parametric framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.