A polymer electrolyte fuel cell (PEFC) is an electrochemical device that converts the chemical energy presents in the hydrogen into electricity and heat having as by product only water. The energy conversion process is carried out in a clean and noiseless manner. Depending on the applications, a PEFC works at different operating temperature. In this study, the internal resistance of a PEFC is evaluated by using Electrochemical Impedance Spectroscopy (EIS) at moderate low current density, i.e., 0.5 A/cm2, in the temperature range of 40 – 80°C. The evaluation is carried out considering frequencies between 3.1kHz and 1Hz. An equivalent Randle circuit is considered as adjusted model and the Nyquist and Bode diagram were obtained to analyze the internal resistance. Results show that the ohmic resistance and charge transport increase when the operating temperature is low, decreasing the cell performance. A voltage drop of 42 mV was obtained for the evaluated temperature sweep. At the same time, it was demonstrated that the double layer capacitance increases at high temperatures, increasing its operating performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.