The evolution of the avian wing has long fascinated biologists, yet almost no work includes the length of primary feathers in consideration of overall wing length variation. Here we show that the length of the longest primary feather () contributing to overall wing length scales with negative allometry against total arm (ta = humerus+ulna+manus). The scaling exponent varied slightly, although not significantly so, depending on whether a species level analysis was used or phylogeny was controlled for using independent contrasts: . The scaling exponent was not significantly different from that predicted (0.86) by earlier work. It appears that there is a general trend for the primary feathers of birds to contribute proportionally less, and ta proportionally more, to overall wingspan as this dimension increases. Wingspan in birds is constrained close to mass (M 1/3) because of optimisation for lift production, which limits opportunities for exterior morphological change. Within the wing, variations in underlying bone and feather lengths nevertheless may, in altering the joint positions, permit a range of different flight styles by facilitating variation in upstroke kinematics.
Introduced Rattus norvegicus (Norway rats) caused the decline of Synthliboramphus antiquus (ancient murrelets) and other seabirds breeding on Langara Island (approximately 3,100 ha), British Columbia. Using funds from the litigation settlement following the Nestucca oil spill, Environment Canada eradicated Norway rats using a technique developed in New Zealand which involved dispensing wax baits containing the anticoagulant brodifacoum at 50 ppm from fixed bait stations. Bait stations were placed every 75 to 100 m on a grid over the entire island (1 station/ha). Rats removed bait for 26 days, after which crews placed baits in protective plastic bags in each bait station. Stations loaded with baits were left on the island and rechecked four times over 2 years, after which bait stations and remaining bait were removed. The eradication succeeded. No signs of rats have been detected on Langara Island and its associated islands since January 1996. No rats were trapped during 1,700 trap‐nights following the poison campaign. Incisor marks of rats were not found on apples or oil‐dipped chew‐sticks. Corvus corax (common ravens) likely suffered greater than 50% mortality from the eradication after apparently gaining access to the poison directly from bait stations and from scavenging rat carcasses. A monitoring and response system is being developed in conjunction with current users of the islands. The success on Langara Island demonstrates how the technique proven on small New Zealand islands of less than 300 ha can be effectively extrapolated to much larger islands.
BackgroundWe compared records of the body mass and roosting behavior of Pacific dunlins (Calidris alpina pacifica) wintering on the Fraser River estuary in southwest British Columbia between the 1970s and the 1990s. 'Over-ocean flocking' is a relatively safe but energetically-expensive alternative to roosting during the high tide period. Fat stores offer protection against starvation, but are a liability in escape performance, and increase flight costs. Peregrine falcons (Falco peregrinus) were scarce on the Fraser River estuary in the 1970s, but their numbers have since recovered, and they prey heavily on dunlins. The increase has altered the balance between predation and starvation risks for dunlins, and thus how dunlins regulate roosting behavior and body mass to manage the danger. We therefore predicted an increase in the frequency of over-ocean flocking as well as a decrease in the amount of fat carried by dunlins over these decades.ResultsHistorical observations indicate that over-ocean flocking of dunlins was rare prior to the mid-1990s and became common thereafter. Residual body masses of dunlins were higher in the 1970s, with the greatest difference between the decades coinciding with peak peregrine abundance in October, and shrinking over the course of winter as falcon seasonal abundance declines. Whole-body fat content of dunlins was lower in the 1990s, and accounted for most of the change in body mass.ConclusionsPacific dunlins appear to manage danger in a complex manner that involves adjustments both in fat reserves and roosting behavior. We discuss reasons why over-ocean flocking has apparently become more common on the Fraser estuary than at other dunlin wintering sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.