Compressed sensing (CS) Block sparse Bayesian learning (BSBL) Electrocardiography (ECG) Electroencephalography (EEG) Field programmable gate array (FPGA)
a b s t r a c tWireless telemonitoring of physiological signals is an important topic in eHealth. In order to reduce on-chip energy consumption and extend sensor life, recorded signals are usually compressed before transmission. In this paper, we adopt compressed sensing (CS) as a low-power compression framework, and propose a fast block sparse Bayesian learning (BSBL) algorithm to reconstruct original signals. Experiments on real-world fetal ECG signals and epilepsy EEG signals showed that the proposed algorithm has good balance between speed and data reconstruction fidelity when compared to state-of-the-art CS algorithms. Further, we implemented the CS-based compression procedure and a low-power compression procedure based on a wavelet transform in field programmable gate array (FPGA), showing that the CS-based compression can largely save energy and other on-chip computing resources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.