This paper presents generalized refinement of Gauss-Seidel method of solving system of linear equations by considering consistently ordered 2-cyclic matrices. Consistently ordered 2-cyclic matrices are obtained while finite difference method is applied to solve differential equation. Suitable theorems are introduced to verify the convergence of this proposed method. To observe the effectiveness of this method, few numerical examples are given. The study points out that, using the generalized refinement of Gauss-Seidel method, we obtain a solution of a problem with a minimum number of iteration and obtain a greater rate of convergence than other previous methods.
In this paper, we present refinement of multiparameters overrelaxation (RMPOR) method which is used to solve the linear system of equations. We investigate its convergence properties for different matrices such as strictly diagonally dominant matrix, symmetric positive definite matrix, and M-matrix. The proposed method minimizes the number of iterations as compared with the multiparameter overrelaxation method. Its spectral radius is also minimum. To show the efficiency of the proposed method, we prove some theorems and take some numerical examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.