Abstract. Nowadays various methods and sensors are available for 3D reconstruction tasks; however, it is still necessary to integrate advantages of different technologies for optimizing the quality 3D models. Computed tomography (CT) is an imaging technique which takes a large number of radiographic measurements from different angles, in order to generate slices of the object, however, without colour information. The aim of this study is to put forward a framework to extract colour information from photogrammetric images for corresponding Computed Tomography (CT) surface data with high precision. The 3D models of the same object from CT and photogrammetry methods are generated respectively, and a transformation matrix is determined to align the extracted CT surface to the photogrammetric point cloud through a coarse-to-fine registration process. The estimated pose information of images to the photogrammetric point clouds, which can be obtained from the standard image alignment procedure, also applies to the aligned CT surface data. For each camera pose, a depth image of CT data is calculated by projecting all the CT points to the image plane. The depth image is in principle should agree with the corresponding photogrammetric image. The points, which cannot be seen from the pose, but are also projected on the depth image, are excluded from the colouring process. This is realized by comparing the range values of neighbouring pixels and finding the corresponding 3D points with larger range values. The same procedure is implemented for all the image poses to obtain the coloured CT surface. Thus, by using photogrammetric images, we achieve a coloured CT dataset with high precision, which combines the advantages from both methods. Rather than simply stitching different data, we deep-dive into the photogrammetric 3D reconstruction process and optimize the CT data with colour information. This process can also provide an initial route and more options for other data fusion processes.
The preservation of cultural heritage assets of all kind is an important task for modern civilizations. This also includes tools and instruments that have been used in the previous decades and centuries. Along with the industrial revolution 200 years ago, mechanical and electrical technologies emerged, together with optical instruments. In the meantime, it is not only museums who showcase these developments, but also companies, universities, and private institutions. Gyroscopes are fascinating instruments with a history dating back 200 years. When J.G.F. Bohnenberger presented his machine to his students in 1810 at the University of Tuebingen, Germany, nobody could have foreseen that this fascinating development would be used for complex orientation and positioning. At the University of Stuttgart, Germany, a collection of 160 exhibits is available and in transition towards their sustainable future. Here, the systems are digitized in 2D, 2.5D, and 3D and are made available for a worldwide community using open access platforms. The technologies being used are computed tomography, computer vision, endoscopy, and photogrammetry. We present a novel workflow for combining voxel representations and colored point clouds, to create digital twins of the physical objects with 0.1 mm precision. This has not yet been investigated and is therefore pioneering work. Advantages and disadvantages are discussed and suggested work for the near future is outlined in this new and challenging field of tech heritage digitization.
Gyroscopes are fascinating instruments with a history of about 200 years. When J.G.F. Bohnenberger presented his machine to his students in 1810 at the University of Tuebingen, Germany, nobody could have foreseen that this fascinating development would be used for complex orientation and positioning. At the University of Stuttgart, Germany, a collection of 160 exhibits is available and in transition for a sustainable future. Here, the systems are digitized in 2D, 2.5D and 3D and are made available for a world-wide community using OpenAccess platforms. The technologies being used are Computed Tomography, Computer Vision, Endoscopy and Photogrammetry. The workflows for combining voxel representations and colored point clouds are described, to create Digital Twins of the tangible assets. Advantages and disadvantages are discussed und work for near future is outlined in this new and challenging field of Tech Heritage digitization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.