Background: Single Nucleotide Polymorphisms (SNPs) in the HEXB gene are associated with a neurodegenerative disorder called Sandhoff disease (SD) (GM2 gangliosidosis-O variant). This study aimed to predict the possible pathogenic SNPs of this gene and their impact on the protein using different bioinformatics tools. Methods: SNPs retrieved from the NCBI database were analyzed using several bioinformatics tools. The different algorithms collectively predicted the effect of single nucleotide substitution on both structure and function of beta subunit beta subunit of both hexosaminidase A and hexosaminidase B proteins. Results: Forty nine mutations were found to be extremely damaging to the structure and function of the HEXB gene protein.Conclusion: According to this study, forty two novel nsSNP in HEXB are predicted to have possible role in Sandhoff disease using different bioinformatics tools, beside two SNPs found to have effect on miRNAs binding site affecting expression of HEXB gene. Our findings may assist in genetic study and diagnosis of Sandhoff disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.