This paper describes porous rotors manufactured from open cell aluminium foam. Rotor construction and theoretical description of fluid flow through rotating porous material are presented. Nine porous rotors made of materials with three different average pore sizes, with or without inducer, three rotor heights and two inlet diameters were selected and compared to a classical rotor with blades. Measurements involved two parts, measurement of pressure drop on non-rotating rotors while integral flow characteristics were measured on rotating rotors. Pressure drops for selected rotors agree well with theoretically calculated values based on Darcy-Forchheimer equation and Ergun equation. Measurements of integral aerodynamic and acoustic characteristics for selected rotors are presented. At low volume flow rates porous rotors have lower aerodynamic efficiency, comparable dimensionless pressure and lower noise compared to classical rotors with blades.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.