Processes in industry, such as batch reactors, often demonstrate a hybrid and non-linear nature. Model predictive control (MPC) is one of the approaches that can be successfully employed in such cases. However, due to the complexity of these processes, obtaining a suitable model is often a difficult task. In this paper a hybrid fuzzy modelling approach with a compact formulation is introduced. The hybrid system hierarchy is explained and the Takagi-Sugeno fuzzy formulation for the hybrid fuzzy modelling purposes is presented. An efficient method for identifying the hybrid fuzzy model is also proposed.A MPC algorithm suitable for systems with discrete inputs is treated. The benefits of the MPC algorithm employing the proposed hybrid fuzzy model are verified on a batch-reactor simulation example: a comparison between MPC employing a hybrid linear model and a hybrid fuzzy model was made. We established that the latter approach clearly outperforms the approach where a linear model is used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.