We consider two systems of active swimmers moving close to a solid surface, one being a living population of wild-type E. coli and the other being an assembly of self-propelled Au-Pt rods. In both situations, we have identified two different types of motion at the surface and evaluated the fraction of the population that displayed ballistic trajectories (active swimmers) with respect to those showing randomlike behavior. We studied the effect of this complex swimming activity on the diffusivity of passive tracers also present at the surface. We found that the tracer diffusivity is enhanced with respect to standard Brownian motion and increases linearly with the activity of the fluid, defined as the product of the fraction of active swimmers and their mean velocity. This result can be understood in terms of series of elementary encounters between the active swimmers and the tracers.
The viscosity of an active suspension of E-Coli bacteria is determined experimentally in the dilute and semi dilute regime using a Y shaped micro-fluidic channel. From the position of the interface between the pure suspending fluid and the suspension, we identify rheo-thickening and rheo-thinning regimes as well as situations at low shear rate where the viscosity of the bacteria suspension can be lower than the viscosity of the suspending fluid. In addition, bacteria concentration and velocity profiles in the bulk are directly measured in the micro-channel.PACS numbers: 47.57.Qk,The fluid mechanics of microscopic swimmers in suspension have been widely studied in recent years. Bacteria [1, 2], algae [3,4] or artificial swimmers [5] dispersed in a fluid display properties that differ strongly from those of passive suspensions [6]. The physical relationships governing momentum and energy transfer as well as constitutive equations vary drastically for these suspensions [7,8]. Unique physical phenomena caused by the activity of swimmers were recently identified such as enhanced Brownian diffusivity [1,[8][9][10]] uncommon viscosity [4,12,13], active transport and mixing [11] or the extraction of work from isothermal fluctuations [13,16]. The presence of living and cooperative species may also induce collective motion and organization at the mesoscopic or macroscopic level [17,18] impacting the constitutive relationships in the semi-diluted or dense regimes. The E.Coli bacterium possesses a quite sophisticated propulsion apparatus consisting of a collection of flagella (7-10 µm length) organized in a bundle and rotating counter-clockwise [20]. In a fluid at rest, the wild-type strain used here has the ability to change direction by unwinding some flagella and moving them in order to alter its swimming direction (a tumble) approximately once every second [21]. In spite of the inherent complexity of the propulsion features, low Reynolds number hydrodynamics impose a long range flow field which can be modeled as an effective force dipole. Due to the thrust coming from the rear, E.coli are described as "pushers", hence defining a sign for the force dipole which has a crucial importance on the rheology of active suspensions [7]. For a dilute suspension of force dipoles, Haines et al [22] and Saintillan [24] derived an explicit relation relating viscosity and shear rate. They obtained an effective viscosity similar in form to the classical Einstein relation for dilute suspensions : η = η 0 (1 + Kφ) (η 0 being the suspending fluid viscosity and φ the volume fraction). These theories predict a negative value for the coefficient K for pushers at low shear rates, meaning the suspension can exhibit a lower viscosity than the suspending fluid. The theoretical assessment of shear viscosity relies on an assumed statistical representation of the orientations of the bacteria, captured by a Fokker-Plank equation and a kinematic model for the swimming trajectories [25,26].Despite the large number of theoretical studies, few experimen...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.