Cyberbullying is a prevalent social problem that inflicts detrimental consequences to the health and safety of victims such as psychological distress, anti-social behaviour, and suicide. The automation of cyberbullying detection is a recent but widely researched problem, with current research having a strong focus on a binary classification of bullying versus non-bullying. This paper proposes a novel approach to enhancing cyberbullying detection through role modeling. We utilise a dataset from ASKfm to perform multi-class classification to detect participant roles (e.g. victim, harasser). Our preliminary results demonstrate promising performance including 0.83 and 0.76 of F1-score for cyberbullying and role classification respectively, outperforming baselines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.