In this manuscript, a class of fractional delay differential equation is considered under multipoint boundary conditions. Two important aspects including existence theory and stability results are developed. For the concerned results prior estimate method and some results of nonlinear analysis are used. By giving a pertinent example the main results are justified.
Some essential conditions for existence theory and stability analysis to a class of boundary value problems of fractional delay differential equations involving Atangana–Baleanu-Caputo derivative are established. The deserted results are derived by using the Banach contraction and Krasnoselskii’s fixed point theorems. Moreover, different kinds of stability theory including Hyers–Ulam, generalized Hyers–Ulam, Hyers–Ulam-Rassias and generalized Hyers–Ulam–Rassias stability are also developed for the problem under consideration. Appropriate examples are given for illustrative purposes.
This research work is related to establish a powerful algorithm for the computation of numerical solution to nonlinear variable order integro-differential equations (VO-IDEs). The adopted procedure is based on the Haar Wavelet Method (HWM) to compute the required numerical solution to the proposed problem. Further, in the considered problem, a proportional-type delay term is involved, which is also known as the pantograph equation. For a physical problem to investigate the computational purposes, we need to first ensure its existence. For this purpose, we utilize classical fixed results given by Banach and Schauder to establish the sufficient conditions for existence of at least one approximate solution to the proposed problem. Two pertinent examples are given, where the error analysis is also recorded.
This manuscript is devoted to investigate qualitative theory of existence and uniqueness of the solution to a dynamical system of an infectious disease known as measles. For the respective theory, we utilize fixed point theory to construct sufficient conditions for existence and uniqueness of the solution. Some results corresponding to Hyers–Ulam stability are also investigated. Furthermore, some semianalytical results are computed for the considered system by using integral transform due to the Laplace and decomposition technique of Adomian. The obtained results are presented by graphs also.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.