In order to obtain sulfur-containing organophosphorus compounds that are promising as extractants of heavy metals, the interaction of elemental phosphorus and sulfur with alkyl bromides catalyzed using strong bases was studied. According to the task, the reaction of non-toxic and non-flammable red phosphorus with alkyl bromides under conditions of phase transfer catalysts (PTC), followed by the introduction of elemental sulfur into the reaction medium, were studied. It is shown that alkyl bromides interact with red phosphorus when heated (95–105 °C, 5–8 h) under conditions of phase transfer catalysts (PTC) in a two-phase system: a 60% aqueous solution of KOH-toluene-benzyltriethylammonium chloride (BTEAC) forming a mixture of organophosphorus compounds along with alkylphosphines (57–60%), are the main reaction products; alkylphosphine oxides are also formed (40–43%). The introduction of elemental sulfur (solution in toluene) at the final stage of the process into the reaction mass cooled to 40–60 °C leads to the expected alkylphosphine sulfides, which are the result of the interaction of alkylphosphines with sulfur. The formation of complex mixtures of products prevents the release of target alkylphosphine sulfides in individual form. However, the synthesized mixture of alkylphosphine sulfides and alkylphosphine oxides without separation into individual components is promising for studying its extraction properties in relation to heavy metals. Testing of the extraction properties of synthesized mixtures of alkylphosphine sulfides and alkylphosphine oxides in relation to heavy metals (Ni, Co, Zn, Pb) and noble metals (Ag) showed that the resulting mixtures of tertiary phosphine oxides and phosphine sulfides are highly effective extractants. The degree of extraction in relation to Ni, Co, Zn, and Pb varies from 99.90 to 99.99%, and for Ag from 99.56 to 99.59%.
Abstract-Algologically pure culture of microalgae Botryococcus braunii was obtained from Alakol Bay of Balkhash Lake. The ability of the selected cultures to synthesize liquid hydrocarbons and fatty acids was revealed. The composition of the lipid compound of investigated microalgae depending on the composition of natural medium was established. Hydrocarbon composition of obtained biomasswas identified, presented mainly by n-alkanes C21-C38, which constitute 41-62 % of their total number. Fatty acid composition of intracellular and extracellular lipids is represented by saturated, monounsaturated and diene fatty acids of the C12-C24 composition in the ratio of 32:18:38, respectively, indicating the potential for using of this microalgae as raw material forbiodiesel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.