The effect of modifying additives (Ni, La, Ce oxides) on the activity of Cu/Al2O3 with a low copper loading was studied for ethanol non‐oxidative dehydrogenation. The catalysts were prepared by impregnation of the commercial Al2O3 granules and characterized by Brunauer‐Emmett‐Teller (BET), scanning electron microscopy (SEM), temperature‐programmed desorption of NH3 (TPD‐NH3), temperature‐programmed reduction of H2 (H2‐TPR), and thermogravimetric analysis (TGA). Modification of Cu/Al2O3 with Ni, La, and Ce oxides results in increasing catalytic activity. A modification of the Cu/Al2O3 catalyst with nickel and lanthanum oxides, in contrast to cerium oxide, leads to an improvement in the dispersion of the catalyst particles. The Cu‐Ni/Al2O3 catalyst with the highest acidity has the highest selectivity for acetaldehyde. The highest selectivity for butanol is observed for the Cu‐La/Al2O3 catalyst, which has the lowest acidity.
The catalytic activity of carriers: θ‒Al2O3, γ‒Al2O3, 5A, 4A, 3A and 13X and the oxides of metals of variable valency ‒ NiO, La2O3, CuO, MoO3, MgO, V2O5, WO3, CoO, Cr2O3, ZnO, ZrO2, CeO2, Fe2O3, supported on the effective carrier γ‒Al2O3 by the method of capillary impregnation of the support with solutions of nitric salts of metals were investigated in the process of carbon dioxide conversion of methane (DRM). The optimal technological regimes for the process were: the reaction temperature -800 °C, the space velocity of the initial reactants ‒ 1500 h-1 with a methane to carbon dioxide ratio equal to 1. It was found that among the studied catalysts the highest activity is shown by the NiO/γ‒Al2O3 catalyst, where the yields of hydrogen and carbon monoxide reaches 45.4 and 42.4% by volume, respectively, when methane conversion is 89%. The XRF method showed that the content of alumina and nickel oxide after the reaction remained unchanged at 96.7 and 3.0%, respectively. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), small angle X-ray scattering (XRS) determined that nickel-containing NiO/γ‒Al2O3 catalyst form nickel nanoparticles (6.4‒10 and 50‒150 nm) and a uniform their distribution on the surface of the carrier takes place. These physical chemical characteristics have a positive effect on the activity of NiO/γ‒Al2O3 catalyst in the process of carbon dioxide conversion of methane to synthesis gas.
The article presents the results of comparative research on the physicochemical characteristics and catalytic activity of copper oxide supported on synthetic SiO2 and SiO2 (RH) from rice husk. SiO2 (RH) is more hydrophobic compared to SiO2, which leads to the concentration of copper oxide on its surface in the form of a “crust”, which is very important in the synthesis of low-percentage catalysts. According to SEM, XRD, and TPR-H2, the use of SiO2 (RH) as a carrier leads to an increase in the dispersion of copper oxide particles, which is the active center of ethanol dehydrogenation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.