We describe an ongoing project to digitize information about plant specimens and make it available to botanists in the field. This first requires digital images and models, and then effective retrieval and mobile computing mechanisms for accessing this information. We have almost completed a digital archive of the collection of type specimens at the Smithsonian Institution Department of Botany. Using these and additional images, we have also constructed prototype electronic field guides for the flora of Plummers Island. Our guides use a novel computer vision algorithm to compute leaf similarity. This algorithm is integrated into image browsers that assist a user in navigating a large collection of images to identify the species of a new specimen. For example, our systems allow a user to photograph a leaf and use this image to retrieve a set of leaves with similar shapes. We measured the effectiveness of one of these systems with recognition experiments on a large dataset of images, and with user studies of the complete retrieval system. In addition, we describe future directions for acquiring models of more complex, 3D specimens, and for using new methods in wearable computing to interact with data in the 3D environment in which it is acquired.
An effective form-finding method for form-fixed spatial network structures is presented in this paper. The adaptive formfinding method is introduced along with the example of designing an ellipsoidal network dome with bar length variations being as small as possible. A typical spherical geodesic network is selected as an initial state, having bar lengths in a limit group number. Next, this network is transformed into the ellipsoidal shape as desired by applying compressions on bars according to the bar length variations caused by transformation. Afterwards, the dynamic relaxation method is employed to explicitly integrate the node positions by applying residual forces. During the form-finding process, the boundary condition of constraining nodes on the ellipsoid surface is innovatively considered as reactions on the normal direction of the surface at node positions, which are balanced with the components of the nodal forces in a reverse direction induced by compressions on bars. The node positions are also corrected according to the fixed-form condition in each explicit iteration step. In the serial results of time history, the optimal solution is found from a time history of states by properly choosing convergence criteria, and the presented form-finding procedure is proved to be applicable for form-fixed problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.