In this article, a study of performing machine learning (ML) based modeling for semiconductor devices has been developed using experimental microwave data. Characterization of gallium arsenide (GaAs) pseudomorphic high electron mobility transistors (pHEMTs) with different gate widths is used as the illustrative example to demonstrate the accuracy and effectiveness of the presented modeling procedure. The tested devices are based on the multifinger layout, in which the total gate width (W) is obtained by multiplying the number of fingers (N f ) and their length (W 0 ). Machines are trained with scattering (S-)parameter measurements up to 65 GHz by using the extreme gradient boosting (XGBoost) algorithm with K-fold cross-validation. Then, the output of the trained machine is utilized by the parameters such as N f and W 0 inside the Auto-encoder (AE) model. In particular, the ML model with AE has a maximum of 99.88% prediction accuracy, despite the uncertainty inherent in the microwave measurements and the unavoidable deviations from the ideal behavior of the analyzed devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.