This paper presents an experimental study on shock-wave/turbulent-boundary-layer interaction unsteadiness and delves specifically into the shear layer’s role. A range of axisymmetric step-induced interactions is investigated and the scale of separation is altered by over an order of magnitude – mass in the recirculation by two orders – while subjected to constant separation-shock strength. The effect of the separated shear layer on interaction unsteadiness is thus isolated and its kinematics are characterised. Results point at a mechanism whereby the depletion of separated flow is dictated by the state of the large eddy structures at their departure from the bubble. Low-frequency pulsations are found to adjust in response and sustain a reconciling view of an entrainment–recharge process, with both an inherent effect of the upstream boundary layer on shear layer inception and an increase in the mass locally acquired by eddies as they develop downstream.
The unsteadiness of a shock-wave/turbulent-boundary-layer interaction induced by an axisymmetric step (cylinder/$90^{\circ }$-disk) is investigated experimentally at Mach 3.9. A large-scale separation of the order of previously reported incoming turbulent superstructures is induced ahead of the step ${\sim}30\unicode[STIX]{x1D6FF}_{o}$ and followed by a downstream separation of ${\sim}10\unicode[STIX]{x1D6FF}_{o}$ behind it, where $\unicode[STIX]{x1D6FF}_{o}$ is the incoming boundary-layer thickness. Narrowband high-frequency instabilities shift gradually to more moderate frequencies along the upstream separation region exhibiting a strong predominance of shear-induced disturbance levels – arising between the outer high-speed flow and the subsonic bubble. Through spectral/time-resolved analysis of this high Reynolds number and large-scale separation, results offer new insights into the shear layer’s inception and evolution (convection, growth and instability) and its influence on interaction unsteadiness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.