BackgroundResistance to chemotherapy is a major obstacle in the effective treatment of cancer patients. B7-homolog 1, also known as programmed death ligand-1 (PD-L1), is an immunoregulatory protein that is overexpressed in several human cancers. Interaction of B7-H1 with programmed death 1 (PD-1) prevents T-cell activation and proliferation, sequestering the T-cell receptor from the cell membrane, inducing T-cell apoptosis, thereby leading to cancer immunoresistance. B7-H1 upregulation contributes to chemoresistance in several types of cancer, but little is known with respect to changes associated with 5-fluorouracil (5-FU) or gastrointestinal cancers.MethodsHCT 116 p53+/+, HCT 116 p53−/− colorectal cancer (CRC) and OE33 esophageal adenocarcinoma (EAC) cells were treated with increasing doses of 5-FU (0.5 uM, 5 uM, 50 uM, 500 uM) or interferon gamma (IFN-γ, 10 ng/mL) in culture for 24 h and B7-H1 expression was quantified using flow cytometry and western blot analysis. We also evaluated B7-H1 expression, by immunohistochemistry, in tissue collected prior to and following neoadjuvant therapy in 10 EAC patients.ResultsB7-H1 expression in human HCT 116 p53+/+ and HCT 116 p53−/− CRC cells lines, while low at baseline, can be induced by treatment with 5-FU. OE33 baseline B7-H1 expression exceeded CRC cell maximal expression and could be further increased in a dose dependent manner following 5-FU treatment in the absence of immune cells. We further demonstrate tumor B7-H1 expression in esophageal adenocarcinoma patient-derived pre-treatment biopsies. While B7-H1 expression was not enhanced in post-treatment esophagectomy specimens, this may be due to the limits of immunohistochemical quantification.ConclusionsB7-H1/PD-L1 expression can be increased following treatment with 5-FU in gastrointestinal cancer cell lines, suggesting alternative mechanisms to classic immune-mediated upregulation. This suggests that combining 5-FU treatment with PD-1/B7-H1 blockade may improve treatment in patients with gastrointestinal adenocarcinoma.
Gastrointestinal (GI) cancers are a group of highly aggressive malignancies with a huge disease burden worldwide. There is clearly a significant unmet need for new drugs and therapies to further improve the treatment outcomes of GI malignancies. Immunotherapy is a novel treatment strategy that is emerging as an effective and promising treatment option against several types of cancers. CTLA-4 and PD-1 are critical immune checkpoint molecules that negatively regulate T cell activation via distinct mechanisms. Immune checkpoint blockade with antibodies directed against these pathways has already shown clinical efficacy that has led to their FDA approval in the treatment of several solid tumors including melanoma, non-small cell lung cancer, renal cell carcinoma, urothelial carcinoma, and head and neck cancer. This review will summarize the current clinical progress of modern immunotherapy in the field of GI tumors, with a special focus on immune checkpoint blockade.
Considerable progress has been made in the field of cancer immunotherapy in recent years. This has been made possible in large part by the identification of new immune-based cellular targets and the development of novel approaches aimed at stimulating the immune system. The role played by the immunosuppressive microenvironment in the development of tumors has been established. The success of checkpoint-inhibiting antibodies and cancer vaccines has marked the beginning of a new era in cancer treatment. This review highlights the clinically relevant principles of cancer immunology and various immunotherapeutic approaches that have either already entered mainstream oncologic practice or are currently in the process of being evaluated in clinical trials. Furthermore, the current barriers to the development of effective immunotherapies and the potential strategies of overcoming them are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.