Traditional methods of disease diagnosis can be time-intensive, error prone and invasive to the subject. These methods are also prejudiced by the doctor's subjectivity. These issues can be resolved by using automated diagnosis methods. There is a considerable dearth of medical experts today, especially in the rural areas. The use of computing technology may help to assist in the diagnostic process. This paper proposes the utilization of computers to detect melanoma skin cancer. Melanoma skin cancer can be fatal, especially in its later stages. However, it shows a high recovery rate when it is detected in its early stages. Considering the lack of medical professionals, early diagnosis of melanoma may be tried using machine learning algorithms. This paper explores hybrid wavelet transform based melanoma identification using ensemble of machine learning algorithms. The hybrid wavelet transform is produced using Discrete Cosine Transform and Haar Wavelet Transform as its components. The sizes of both components are varied from 4x4 to 128x128 to obtain the hybrid wavelet transorm. Experimentation performed on the transformed dermoscopy skin images with machine learning algorithms and their ensembles gives rise to a total of 196 variations. Overall, if the average of the metrics accuracy, sensitivity and specificity is considered, the SVM algorithm using the hybrid transform of Haar 8x8 and DCT 64x64 gives the best performance, followed by the SVM algorithm using hybrid transform of Haar 128x128 and DCT 4x4. The improvised performance with reduced feature vector size, obtained by merging of two transforms, to generate hybrid transform is the major contribution of the proposed method.
Melanoma is a mortal type of skin cancer. Early detection of melanoma significantly improves the patient’s chances of survival. Detection of melanoma at an early juncture demands expert doctors. The scarcity of such expert doctors is a major issue with healthcare systems globally. Computer-assisted diagnostics may prove helpful in this case. This paper proposes a health informatics system for melanoma identification using machine learning with dermoscopy skin images. In the proposed method, the features of dermoscopy skin images are extracted using the Haar wavelet pyramid various levels. These features are employed to train machine learning algorithms and ensembles for melanoma identification. The consideration of higher levels of Haar Wavelet Pyramid helps speed up the identification process. It is observed that the performance gradually improves from the Haar wavelet pyramid level 4x4 to 16x16, and shows marginal improvement further. The ensembles of machine learning algorithms have shown a boost in performance metrics compared to the use of individual machine learning algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.