A particle-laden turbulent flow through a square duct was simulated using a direct numerical solution of the Navier-Stokes equations coupled with Langrangian particle tracking. Computations of particle transport were employed to elucidate the mechanisms by which particles with varying inertia deposit to the walls of a square duct. Gravity was neglected and a one-way coupling was assumed between the particles and the fluid. The computational results demonstrate that, although the aerosol penetration through a square duct is not significantly different than through a circular pipe, there exist differences in the transport and deposition mechanisms. Most notably, the off-axis secondary flows unique to the square duct preferentially deposit higher-inertia particles closer to the corners of the duct. By contrast, the same secondary flows act to suppress the deposition of lower-inertia particles to the duct corners by efficiently transporting them back towards the duct core before deposition can occur.
Modeling the unsteady flow of a fan subject to an inlet distortion is computationally expensive due to the need to model the full-annulus. Using the Fourier Transformation (FT) method in ANSYS CFX, which recognizes phase-shifted periodic boundary conditions, the fan inlet distortion simulation can be achieved efficiently by solving just two passages. The FT method can handle very large inlet distortion to blade passage pitch ratios such as the case of the problem simulated in this work. The analysis considers transonic flow through a fan with high bypass ratio subjected to an inlet total pressure distortion. The inlet disturbance traverses the inlet once per revolution and is intended to simulate the inlet flow distortion seen by an aircraft engine fan during take-off conditions. The pressure ratio across the fan is chosen so that the fan moves from a started to un-started condition as the disturbance moves past the inlet. This condition will provide a rigorous test of the FT method. The FT method is validated by comparing to the equivalent full-annulus unsteady solution. The FT unsteady solution compares remarkably well with the reference solution and is able to reproduce the detailed dynamics of the shock movement. Moreover, the solution from the FT method is also able to reproduce the efficiency, viscous effects and blade loading from the full-annulus case. The FT solution is obtained with a 5X reduction in CPU time and a 10X reduction in memory requirement.
A finite-volume solver is used to describe the cyclonic motion in a cylindrical vortex chamber comprising eight tangential injectors and a variable nozzle size. The simulations are performed under steady, incompressible, and inviscid flow conditions with air as the working fluid. First, we apply a fine tetrahedral mesh to minimize cell skewness, particularly near injectors. Second, this mesh is converted into a polyhedral grid to improve convergence characteristics and precision. After achieving convergence, the velocity components are evaluated and compared to existing analytical solutions. We find that well-resolved numerical simulations can accurately predict the expected forced vortex behavior in the core region as well as the free vortex tail in the outer region. We also confirm that the swirl velocity remains axially invariant irrespective of the outlet radius. Similarly, we are able to ascertain that the axial and radial velocities embody the bidirectional nature of the motion. As for the computed pressure distribution, it is found to agree quite well with both theoretical formulations and experimental measurements of cyclone separators. Then using a parametric trade study, the effect of nozzle variations on the internal flow character, mantle structure, and recirculation zones is systematically investigated. Apart from the exit diameter, we find that the nozzle length and inlet curvature can substantially affect the internal flow development including the formation of backflow regions, recirculation zones, and mantle excursions. Finally, an empirical relation is constructed for the nozzle radius of curvature and shown to effectively suppress the emergence of recirculation and backflow regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.