SummaryBackgroundThe aim of the study was to determine the root canal morphology of permanent mandibular incisor teeth in the Indian subpopulation with the use of cone beam computed tomography (CBCT).Material/MethodsCBCT images of 200 patients with 800 permanent mandibular incisors, fulfilling necessary inclusion criteria and aged 18 to 60 years were evaluated. The number of roots, number of root canals and canal configuration were investigated and then classified according to Vertucci’s classification of root canals. The effect of gender on the incidence of root canal morphology was also investigated.ResultsAll the permanent mandibular incisors had a single root. The majority of mandibular incisors (66.5%) had a single root with a single canal. The prevalence of second canals was as follows: right central incisor – 33.5%, left central incisor – 30%, right lateral incisors – 33.5% and left lateral incisor – 36.5%. According to gender, 15.2% of men and 20.4% of women had a second root canal. Type 1 Vertucci configuration was most prevalent, followed by type 3, type 2, type 5 and type 4 in that order.ConclusionsType 1 Vertucci’s classification (64.5%) was the most prevalent canal configuration in the mandibular anterior teeth in the Indian population. Type 5 Vertucci’s classification was the most frequently observed canal configuration of the two-canalled teeth. CBCT is an excellent imaging modality for detection of different canal configurations of mandibular incisors.
BackgroundIn the face of chronic and emerging resistance of parasites to currently available drugs and constant need for new anti-malarials, natural plant products have been the bastion of anti-malarials for thousands of years. Moreover natural plant products and their derivatives have traditionally been a common source of drugs, and represent more than 30% of the current pharmaceutical market. The present study shows evaluation of anti-malarial effects of compound conessine isolated from plant Holarrhena antidysenterica frequently used against malaria in the Garhwal region of north-west Himalaya.MethodsIn vitro anti-plasmodial activity of compound was assessed using schizont maturation and parasite lactate dehydrogenase (pLDH) assay. Cytotoxic activities of the examined compound were determined on L-6 cells of rat skeletal muscle myoblast. The four-day test for anti-malarial activity against a chloroquine-sensitive Plasmodium berghei NK65 strain in BALB/c mice was used for monitoring in vivo activity of compound. In liver and kidney function test, the activity of alkaline phosphatase (ALP) was examined by p-NPP method, bilirubin by Jendrassik and Grof method. The urea percentage was determined by modified Berthelot method and creatinine by alkaline picrate method in serum of mice using ENZOPAK/CHEMPAK reagent kits.ResultsCompound conessine showed in vitro anti-plasmodial activity with its IC50 value 1.9 μg/ml and 1.3 μg/ml using schizont maturation and pLDH assay respectively. The compound showed cytotoxity IC50= 14 μg/ml against L6 cells of rat skeletal muscle myoblast. The isolated compound from plant H. antidysenterica significantly reduced parasitaemia (at 10 mg/kg exhibited 88.95% parasite inhibition) in P. berghei-infected mice. Due to slightly toxic nature (cytotoxicity = 14), biochemical analysis (liver and kidney function test) of the serum from mice after administration of conessine were also observed.ConclusionThe present investigation demonstrates that the compound conessine exhibited substantial anti-malarial property. The isolated compound could be chemically modified to obtain a more potent chemical entity with improved characteristics against malaria.
BackgroundThe increasing number of multidrug-resistant Plasmodium strains warrants exploration of new anti-malarials. Medicinal plant research has become more important, particularly after the development of Chinese anti-malarial drug artemisnin from Artemisia annua. The present study shows evaluation of anti-malarial effects of two plants commonly used against malaria in the Garhwal region of north-west Himalaya, in order to discover the herbal-based medicine.MethodsIn vitro anti-plasmodial sensitivity of plant extracts was assessed using schizont maturation and parasite lactate dehydrogenase (pLDH) assay. Cytotoxic activities of the examined extracts were determined on L-6 cells of rat skeletal muscle myoblast. The 4-day test for anti-malarial activity against a chloroquine sensitive Plasmodium berghei NK65 strain in Swiss albino mice was used for monitoring in vivo activity of plant extracts.ResultsChloroform extract of H. antidysenterica (HA-2) and petroleum ether extract of V. canescens (VC-1) plants significantly reduced parasitaemia in P. berghei infected mice. The extract HA-2 showed in vitro anti-plasmodial activity with its IC50 value 5.5 μg/ml using pLDH assay and ED50 value 18.29 mg/kg in P. berghei infected Swiss albino mice. Similarly petroleum ether extract of V. canescens (VC-1) showed in vitro anti-plasmodial activity with its IC50 value 2.76 μg/ml using pLDH assay and ED50 15.8 mg/kg in P. berghei infected mice. The extracts coded as HA-2 at 30 mg/kg and VC-1 at 20 mg/kg exhibited parasite inhibition in mice: 73.2% and 63.0% respectively. Of these two plant extracts, petroleum ether extract of V. canescens was found slightly cytotoxic.ConclusionThe present investigation reflects the use of these traditional medicinal plants against malaria and these plants may work as potential source in the development of variety of herbal formulations for the treatment of malaria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.