Aflatoxins are polyaromatic mycotoxins that contaminate a range of food crops as a result of fungal growth and contribute to serious health problems in the developing world because of their toxicity and mutagenicity. Although relatively resistant to biotic degradation, aflatoxins can be metabolized by certain species of Actinomycetales. However, the enzymatic basis for their breakdown has not been reported until now. We have identified nine Mycobacterium smegmatis enzymes that utilize the deazaflavin cofactor F420H2 to catalyse the reduction of the α,β-unsaturated ester moiety of aflatoxins, activating the molecules for spontaneous hydrolysis and detoxification. These enzymes belong to two previously uncharacterized F420H2 dependent reductase (FDR-A and -B) families that are distantly related to the flavin mononucleotide (FMN) dependent pyridoxamine 5′-phosphate oxidases (PNPOxs). We have solved crystal structures of an enzyme from each FDR family and show that they, like the PNPOxs, adopt a split barrel protein fold, although the FDRs also possess an extended and highly charged F420H2 binding groove. A general role for these enzymes in xenobiotic metabolism is discussed, including the observation that the nitro-reductase Rv3547 from Mycobacterium tuberculosis that is responsible for the activation of bicyclic nitroimidazole prodrugs belongs to the FDR-A family.
Two classes of F 420 -dependent reductases (FDR-A and FDR-B) that can reduce aflatoxins and thereby degrade them have previously been isolated from Mycobacterium smegmatis . One class, the FDR-A enzymes, has up to 100 times more activity than the other. F 420 is a cofactor with a low reduction potential that is largely confined to the Actinomycetales and some Archaea and Proteobacteria . We have heterologously expressed ten FDR-A enzymes from diverse Actinomycetales , finding that nine can also use F 420 H 2 to reduce aflatoxin. Thus FDR-As may be responsible for the previously observed degradation of aflatoxin in other Actinomycetales . The one FDR-A enzyme that we found not to reduce aflatoxin belonged to a distinct clade (herein denoted FDR-AA), and our subsequent expression and analysis of seven other FDR-AAs from M. smegmatis found that none could reduce aflatoxin. Certain FDR-A and FDR-B enzymes that could reduce aflatoxin also showed activity with coumarin and three furanocoumarins (angelicin, 8-methoxysporalen and imperatorin), but none of the FDR-AAs tested showed any of these activities. The shared feature of the compounds that were substrates was an α,β-unsaturated lactone moiety. This moiety occurs in a wide variety of otherwise recalcitrant xenobiotics and antibiotics, so the FDR-As and FDR-Bs may have evolved to harness the reducing power of F 420 to metabolise such compounds. Mass spectrometry on the products of the FDR-catalyzed reduction of coumarin and the other furanocoumarins shows their spontaneous hydrolysis to multiple products.
Hippo pathway was initially identified through genetic screens for genes regulating organ size in fruitflies. Recent studies have highlighted the role of Hippo signaling as a key regulator of homeostasis, and in tumorigenesis. Hippo pathway is comprised of genes that act as tumor suppressor genes like hippo ( hpo ) and warts ( wts ), and oncogenes like yorkie ( yki ). YAP and TAZ are two related mammalian homologs of Drosophila Yki that act as effectors of the Hippo pathway. Hippo signaling deficiency can cause YAP- or TAZ-dependent oncogene addiction for cancer cells. YAP and TAZ are often activated in human malignant cancers. These transcriptional regulators may initiate tumorigenic changes in solid tumors by inducing cancer stem cells and proliferation, culminating in metastasis and chemo-resistance. Given the complex mechanisms (e.g., of the cancer microenvironment, and the extrinsic and intrinsic cues) that overpower YAP/TAZ inhibition, the molecular roles of the Hippo pathway in tumor growth and progression remain poorly defined. Here we review recent findings from studies in whole animal model organism like Drosophila on the role of Hippo signaling regarding its connection to inflammation, tumor microenvironment, and other oncogenic signaling in cancer growth and progression.
The recently reported F 420 H 2 -dependent reductases (FDRs) catalyse the reduction of aflatoxins and coumarin via hydrogenation of the a,b-unsaturated moiety. We report that three FDRs (MSMEG_2027, MSMEG_6848 and MSMEG_3356) from Mycobacterium smegmatis also exhibit a different catalytic function towards some aflatoxins through the use of a different cofactor. When F 420 was replaced by FMN in these three enzymes, the aflatoxins AFG1 and AFG2 were oxidised via dehydrogenation, producing the reduced cofactor (FMNH 2 ) and an unstable aflatoxin derivative that hydrolyses to an enol with three distinct structural isomers. Both the oxidation and reduction reactions are discussed in detail. This is the first example of an enzyme showing promiscuity for its cofactor leading to divergence of function against the same substrate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.