In this article, we discuss a data sharing and knowledge integration framework through autonomous agents with blockchain for implementing Electronic Health Records (EHR). This will enable us to augment existing blockchain-based EHR Systems. We discuss how major concerns in the health industry, i.e., trust, security and scalability, can be addressed by transitioning from existing models to convergence of the three technologies – blockchain, agent-based modeling, and knowledge graph in a decentralized ecosystem. Each autonomous agent is responsible for instantiating key processes, such as user authentication and authorization, smart contracts, and knowledge graph generation through data integration among the participating stakeholders in the network. We discuss a layered approach for the design of the proposed system leading to an enhanced, safer clinical decision-making system. This can pave the way toward more informed and engaged patients and citizens by delivering personalized healthcare.
This work investigates the potential for using Grammatical Evolution (GE) to generate an initial seed for the construction of a pseudo-random number generator (PRNG) and cryptographically secure (CS) PRNG. We demonstrate the suitability of GE as an entropy source and show that the initial seeds exhibit an average entropy value of 7.940560934 for 8-bit entropy, which is close to the ideal value of 8. We then construct two random number generators, GE-PRNG and GE-CSPRNG, both of which employ these initial seeds. We use Monte Carlo simulations to establish the efficacy of the GE-PRNG using an experimental setup designed to estimate the value for pi, in which 100,000,000 random numbers were generated by our system. This returned the value of pi of 3.146564000, which is precise up to six decimal digits for the actual value of pi. We propose a new approach called control_flow_incrementor to generate cryptographically secure random numbers. The random numbers generated with CSPRNG meet the prescribed National Institute of Standards and Technology SP800-22 and the Diehard statistical test requirements. We also present a computational performance analysis of GE-CSPRNG demonstrating its potential to be used in industrial applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.