A mixed integer linear program is presented for deterministically scheduling departure aircraft at runways. The method addresses different schemes of managing the departure queuing area by treating it as first-in-first-out queues or as a simple parking area, where any available aircraft can take-off irrespective of its relative sequence with others. The method explicitly considers separation criteria between successive departures and also incorporates an optional prioritization scheme using time windows. Multiple objectives pertaining to throughput, system delay and maximum individual delay are used. Results indicate minimizing system delay alone improves throughput over a basic first-come-first-serve rule. Modifications for computational efficiency are also presented in the form of re-formulating certain constraints and defining additional inequalities for better bounds.
A mixed integer linear program is presented for deterministically scheduling departure and arrival aircraft at airport runways. This method addresses different schemes of managing the departure queuing area by treating it as first-in-first-out queues or as a simple parking area where any available aircraft can take-off irrespective of its relative sequence with others. In addition, this method explicitly considers separation criteria between successive aircraft and also incorporates an optional prioritization scheme using time windows. Multiple objectives pertaining to throughput and system delay are used independently. Results indicate improvement over a basic first-come-first-serve rule in both system delay and throughput. Minimizing system delay results in small deviations from optimal throughput, whereas minimizing throughput results in large deviations in system delay. Enhancements for computational efficiency are also presented in the form of reformulating certain constraints and defining additional inequalities for better bounds.
This paper presents a model for managing departure aircraft at the spot or gate on the airport surface. The model is applied over two time frames: long term (one hour in future) for collaborative decision making, and short term (immediate) for decisions regarding the release of aircraft. The purpose of the model is to provide the controller a schedule of spot or gate release times optimized for runway utilization. This model was tested in nominal and heavy surface traffic scenarios in a simulated environment, and results indicate average throughput improvement of 10% in high traffic scenarios even with up to two minutes of uncertainty in spot arrival times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.