India is the second largest producer of black tea in the world. The biggest challenge for tea growers of India nowadays is to combat pests and diseases. Tea crop in India is infested by not less than 720 insect and mite species. At least four sucking pests and six chewing pests have well established themselves as regular pests causing substantial damage to this foliage crop. Various synthetic pesticides are widely used for the management of tea pests in India. Applications of such large quantity of pesticides could cause various problems such as development of resistance, deleterious effects on non-target organisms such as insect predators and parasitoids, upsetting the ecological balance, and accumulation of pesticide residues on tea leaves. There is a growing demand for organic tea or at least pesticide residue free tea in the international market which affects the export price. There is also a higher emphasis of implementation of new regulations on internationally traded foods and implementation of Plant Protection Code (PPC) for tea by the Government of India. This necessitates a relook into the usage pattern of synthetic pesticides on this crop. There are various non-chemical interventions which are being worked out for their sustainability, compatibility, and eco-friendly properties which can gradually replace the use of toxic chemicals. The application of plant extracts with insecticidal properties provides an alternative to the synthetic pesticides. Botanical products, especially neem-based products, have made a relatively moderate impact in tea pest control. Research has also demonstrated the potential of 67 plant species as botanical insecticides against tea pests. The majority of plant products used in pest management of tea in India are in the form of crude extracts prepared locally in tea garden itself, and commercial standardized formulations are not available for most of the plants due to lack of scientific research in the area. Apart from systematic research in this area, to facilitate the simplified and trade friendly registration procedures with quality assurance of the products, there is an increasing need of regulatory authority and national norms in India.
The goal of this study is to identify and characterize the cellulose degrading microorganisms in the larval gut of the white grub beetle, Lepidiota mansueta. Thirty bacterial strains were isolated and tested for cellulolytic activity using soluble carboxymethyl cellulose (CMC) degrading assays. Of these strains, five (FGB1, FB2, MB1, MB2, and HB1) degrade cellulose. Cellulolytic activity was determined based on formation of clear zone and cellulolytic index on CMC plate media. The highest cellulolytic index (2.14) was found in FGB1. Partial 16S rDNA sequencing, morphological, and biochemical tests were used to identify and characterize the five isolates, all Citrobacter sp. (Enterobacteriaceae). This study identifies new cellulose degrading microorganisms from the larval gut of L. mansueta. The significance of identifying these strains lies in possible application in cellulose degradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.