Remarkable progress in solid-state NMR has enabled complete structure determination of uniformly labeled proteins in the size range of 5-10 kDa. Expanding these applications to larger or mass-limited systems requires further improvements in spectral sensitivity, for which inverse detection of 13C and 15N signals with 1H is one promising approach. Proton detection has previously been demonstrated to offer sensitivity benefits in the limit of sparse protonation or with approximately 30 kHz magic-angle spinning (MAS). Here we focus on experimental schemes for proteins with approximately 100% protonation. Full protonation simplifies sample preparation and permits more complete chemical shift information to be obtained from a single sample. We demonstrate experimental schemes using the fully protonated, uniformly 13C,15N-labeled protein GB1 at 40 kHz MAS rate with 1.6-mm rotors. At 500 MHz proton frequency, 1-ppm proton line widths were observed (500 +/- 150 Hz), and the sensitivity was enhanced by 3 and 4 times, respectively, versus direct 13C and 15N detection. The enhanced sensitivity enabled a family of 3D experiments for spectral assignment to be performed in a time-efficient manner with less than a micromole of protein. CANH, CONH, and NCAH 3D spectra provided sufficient resolution and sensitivity to make full backbone and partial side-chain proton assignments. At 750 MHz proton frequency and 40 kHz MAS rate, proton line widths improve further in an absolute sense (360 +/- 115 Hz). Sensitivity and resolution increase in a better than linear manner with increasing magnetic field, resulting in 14 times greater sensitivity for 1H detection relative to that of 15N detection.
Solid-state NMR has emerged as an important tool for structural biology and chemistry, capable of solving atomic-resolution structures for proteins in membrane-bound and aggregated states. Proton detection methods have been recently realized under fast magic-angle spinning conditions, providing large sensitivity enhancements for efficient examination of uniformly labeled proteins. The first and often most challenging step of protein structure determination by NMR is the site-specific resonance assignment. Here we demonstrate resonance assignments based on high-sensitivity proton-detected three-dimensional experiments for samples of different physical states, including a fully-protonated small protein (GB1, 6 kDa), a deuterated microcrystalline protein (DsbA, 21 kDa), a membrane protein (DsbB, 20 kDa) prepared in a lipid environment, and the extended core of a fibrillar protein (α-synuclein, 14 kDa). In our implementation of these experiments, including CONH, CO(CA)NH, CANH, CA(CO)NH, CBCANH, and CBCA(CO)NH, dipolar-based polarization transfer methods have been chosen for optimal efficiency for relatively high protonation levels (full protonation or 100 % amide proton), fast magic-angle spinning conditions (40 kHz) and moderate proton decoupling power levels. Each H–N pair correlates exclusively to either intra- or inter-residue carbons, but not both, to maximize spectral resolution. Experiment time can be reduced by at least a factor of 10 by using proton detection in comparison to carbon detection. These high-sensitivity experiments are especially important for membrane proteins, which often have rather low expression yield. Proton-detection based experiments are expected to play an important role in accelerating protein structure elucidation by solid-state NMR with the improved sensitivity and resolution.
We show that quantitative internuclear (15)N-(13)C distances can be obtained in sufficient quantity to determine a complete, high-resolution structure of a moderately sized protein by magic-angle spinning solid-state NMR spectroscopy. The three-dimensional ZF-TEDOR pulse sequence is employed in combination with sparse labeling of (13)C sites in the beta1 domain of the immunoglobulin binding protein G (GB1), as obtained by bacterial expression with 1,3-(13)C or 2-(13)C-glycerol as the (13)C source. Quantitative dipolar trajectories are extracted from two-dimensional (15)N-(13)C planes, in which approximately 750 cross peaks are resolved. The experimental data are fit to exact theoretical trajectories for spin clusters (consisting of one (13)C and several (15)N each), yielding quantitative precision as good as 0.1 A for approximately 350 sites, better than 0.3 A for another 150, and approximately 1.0 A for 150 distances in the range of 5-8 A. Along with isotropic chemical shift-based (TALOS) dihedral angle restraints, the distance restraints are incorporated into simulated annealing calculations to yield a highly precise structure (backbone RMSD of 0.25+/-0.09 A), which also demonstrates excellent agreement with the most closely related crystal structure of GB1 (2QMT, bbRMSD 0.79+/-0.03 A). Moreover, side chain heavy atoms are well restrained (0.76+/-0.06 A total heavy atom RMSD). These results demonstrate for the first time that quantitative internuclear distances can be measured throughout an entire solid protein to yield an atomic-resolution structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.