Electronic learning (e-learning) has become one of the widely used modes of pedagogy in higher education today due to the convenience and flexibility offered in comparison to traditional learning activities. Advancements in Information and Communication Technology have eased learner connectivity online and enabled access to an extensive range of learning materials on the World Wide Web. Post covid-19 pandemic, online learning has become the most essential and inevitable medium of learning in primary, secondary and higher education. In recent times, Massive Open Online Courses (MOOCs) have transformed the current education strategy by offering a technology-rich and flexible form of online learning. A key component to assess the learner's progress and effectiveness of online teaching is the Multiple Choice Question (MCQ) assessment in most of the MOOC courses. Uncertainty exists on the reliability and validity of the assessment component as it raises a qualm whether the real knowledge acquisition level reflects upon the assessment score. This is due to the possibility of random and smart guesses, learners can attempt, as MCQ assessments are more vulnerable than essay type assessments. This paper presents the architecture, development, evaluation of the I-Quiz system, an intelligent assessment tool, which captures and analyses both the implicit and explicit non-verbal behaviour of learner and provides insights about the learner's real knowledge acquisition level. The I-Quiz system uses an innovative way to analyse the learner non-verbal behaviour and trains the agent using machine learning techniques. The intelligent agent in the system evaluates and predicts the real knowledge acquisition level of learners. A total of 500 undergraduate engineering students were asked to attend an on-Screen MCQ assessment test using the I-Quiz system comprising 20 multiple choice questions related to advanced C programming. The non-verbal behaviour of the learner is recorded using a front-facing camera during the entire assessment period. The resultant dataset of non-verbal behaviour and question-answer scores is used to train the random forest classifier model to predict the real knowledge acquisition level of the learner. The trained model after hyperparameter tuning and cross validation achieved a normalized prediction accuracy of 85.68%.
Time-lapse (4D) seismic is widely deployed in offshore operations to monitor improved oil recovery methods including water flooding, yet its value for enhanced well and reservoir management is not fully realized due to the long cycle times required for quantitative 4D seismic data assimilation into dynamic reservoir models. To shorten the cycle, we have designed a simple inversion workflow to estimate reservoir property changes directly from 4D attribute maps using machine-learning (ML) methods. We generated tens of thousands of training samples by Monte Carlo sampling from the rock-physics model within reasonable ranges of the relevant parameters. Then, we applied ML methods to build the relationship between the reservoir property changes and the 4D attributes, and we used the learnings to estimate the reservoir property changes given the 4D attribute maps. The estimated reservoir property changes (e.g., water saturation changes) can be used to analyze injection efficiency, update dynamic reservoir models, and support reservoir management decisions. We can reduce the turnaround time from months to days, allowing early engagements with reservoir engineers to enhance integration. This accelerated data assimilation removes a deterrent for the acquisition of frequent 4D surveys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.