Support vector machines and related classification models require the solution of convex optimization problems that have one or more regularization hyper-parameters. Typically, the hyper-parameters are selected to minimize the cross-validated estimates of the out-of-sample classification error of the model. This cross-validation optimization problem can be formulated as a bilevel program in which the outer-level objective minimizes the average number of misclassified points across the cross-validation folds, subject to inner-level constraints such that the classification functions for each fold are (exactly or nearly) optimal for the selected hyper-parameters. Feature selection is included in the bilevel program in the form of bound constraints in the weights. The resulting bilevel problem is converted to a mathematical program with linear equilibrium constraints, which is solved using state-of-the-art optimization methods. This approach is significantly more versatile than commonly used grid search procedures, enabling, in particular, the use of models with many hyper-parameters. Numerical results demonstrate the practicality of this approach for model selection in machine learning.
This paper presents a parameter-free integer-programming based algorithm for the global resolution of a linear program with linear complementarity constraints (LPCC). The cornerstone of the algorithm is a minimax integer program formulation that characterizes and provides certificates for the three outcomes-infeasibility, unboundedness, or solvability-of an LPCC. An extreme point/ray generation scheme in the spirit of Benders decomposition is developed, from which valid inequalities in the form of satisfiability constraints are obtained. The feasibility problem of these inequalities and the carefully guided linear programming relaxations of the LPCC are the workhorse of the algorithm, which also employs a specialized procedure for the sparsification of the satifiability cuts. We establish the finite termination of the algorithm and report computational results using the algorithm for solving randomly generated LPCCs of reasonable sizes. The results establish that the algorithm can handle infeasible, unbounded, and solvable LPCCs effectively.
We investigate the viability of statistical relational machine learning algorithms for the task of identifying malignancy of renal masses using radiomics-based imaging features. Features characterizing the texture, signal intensity, and other relevant metrics of the renal mass were extracted from multiphase contrast-enhanced computed tomography images. The recently developed formalism of relational functional gradient boosting (RFGB) was used to learn human-interpretable models for classification. Experimental results demonstrate that RFGB outperforms many standard machine learning approaches as well as the current diagnostic gold standard of visual qualification by radiologists.
Abstract. Most metric learning methods are characterized by diverse loss functions and projection methods, which naturally begs the question: is there a wider framework that can generalize many of these methods? In addition, ever persistent issues are those of scalability to large data sets and the question of kernelizability. We propose a unified approach to Mahalanobis metric learning: an online regularized metric learning algorithm based on the ideas of composite objective mirror descent (comid). The metric learning problem is formulated as a regularized positive semidefinite matrix learning problem, whose update rules can be derived using the comid framework. This approach aims to be scalable, kernelizable, and admissible to many different types of Bregman and loss functions, which allows for the tailoring of several different classes of algorithms. The most novel contribution is the use of the trace norm, which yields a sparse metric in its eigenspectrum, thus simultaneously performing feature selection along with metric learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.