We study the effects of lithium (Li) incorporation in the cathodes of organic light-emitting devices. A thermally evaporated surface layer of metallic Li is found to diffuse through, and subsequently dope, the electron transporting organic semiconducting thin films immediately below the cathode, forming an Ohmic contact. A diffusion length of ∼700 Å is inferred from analyses of the current–voltage and secondary ion mass spectrometry data. The conductivity of the Li-doped organic films is ∼3×10−5 S/cm. Photoemission spectroscopy suggests that Li lowers the barrier to injection at the organic/cathode interface, introduces gap states in the bulk of the organic semiconductor, and dopes the bulk to facilitate efficient charge transport.
We introduce a class of low-reflectivity, high-transparency, nonmetallic cathodes useful for a wide range of electrically active, transparent organic devices. The metal-free cathode employs a thin film of copper phthalocyanine (CuPc) capped with a film of low-power, radio-frequency sputtered indium tin oxide (ITO). The CuPc prevents damage to the underlying organic layers during the ITO sputtering process. We present a model suggesting that damage-induced states at the cathode/organic film interface are responsible for the electron injection properties of the contact. Due to the low contact reflectivity, a non-antireflection-coated, metal-free transparent organic light-emitting device (MF-TOLED) is demonstrated with 85% transmission in the visible, emitting nearly identical amounts of light in the forward and backscattered directions. The MF-TOLED performance is found to be comparable to that of conventional TOLEDs employing a more reflective and absorptive cathode consisting of a semitransparent thin film of Mg:Ag capped with ITO.
Articles you may be interested inElectrically pumped random lasing in ZnO-based metal-insulator-semiconductor structured devices: Effect of ZnO film thickness
We demonstrate organic light-emitting devices (OLEDs) employing highly transparent cathodes comprised of 2,9-dimethyl-4,7 diphenyl-1,10-phenanthroline (BCP) and an ultrathin film of Li capped with radio-frequency magnetron-sputtered indium–tin–oxide. The cathodes are incorporated onto a conventional bilayer small-molecule OLED. The operating voltages and the total device external quantum efficiencies emitted from the top and substrate surfaces (1.0±0.05)% are comparable to the best conventional undoped OLEDs employing thick metallic cathodes. The device characteristics are independent of the position of Li within the compound cathode, suggesting that Li readily diffuses through BCP to enhance electron injection. An increase of a factor ∼3.5 in the external quantum efficiency is observed compared to devices containing no Li. These results suggest that Li donates electrons to the BCP, increasing its conductivity to the point that band bending occurs to aid in the injection of charge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.