Tractography based on non-invasive diffusion imaging is central to the study of human brain connectivity. To date, the approach has not been systematically validated in ground truth studies. Based on a simulated human brain data set with ground truth tracts, we organized an open international tractography challenge, which resulted in 96 distinct submissions from 20 research groups. Here, we report the encouraging finding that most state-of-the-art algorithms produce tractograms containing 90% of the ground truth bundles (to at least some extent). However, the same tractograms contain many more invalid than valid bundles, and half of these invalid bundles occur systematically across research groups. Taken together, our results demonstrate and confirm fundamental ambiguities inherent in tract reconstruction based on orientation information alone, which need to be considered when interpreting tractography and connectivity results. Our approach provides a novel framework for estimating reliability of tractography and encourages innovation to address its current limitations.
We propose a weakly supervised temporal action localization algorithm on untrimmed videos using convolutional neural networks. Our algorithm learns from video-level class labels and predicts temporal intervals of human actions with no requirement of temporal localization annotations. We design our network to identify a sparse subset of key segments associated with target actions in a video using an attention module and fuse the key segments through adaptive temporal pooling. Our loss function is comprised of two terms that minimize the video-level action classification error and enforce the sparsity of the segment selection. At inference time, we extract and score temporal proposals using temporal class activations and class-agnostic attentions to estimate the time intervals that correspond to target actions. The proposed algorithm attains state-of-the-art results on the THUMOS14 dataset and outstanding performance on ActivityNet1.3 even with its weak supervision.
One key issue that must be addressed during the development of image segmentation algorithms is the accuracy of the results they produce. Algorithm developers require this so they can see where methods need to be improved and see how new developments compare with existing ones. Users of algorithms also need to understand the characteristics of algorithms when they select and apply them to their neuroimaging analysis applications. Many metrics have been proposed to characterize error and success rates in segmentation, and several datasets have also been made public for evaluation. Still, the methodologies used in analyzing and reporting these results vary from study to study, so even when studies use the same metrics their numerical results may not necessarily be directly comparable. To address this problem, we developed a web-based resource for evaluating the performance of skull-stripping in T1-weighted MRI. The resource provides both the data to be segmented and an online application that performs a validation study on the data. Users may download the test dataset, segment it using whichever method they wish to assess, and upload their segmentation results to the server. The server computes a series of metrics, displays a detailed report of the validation results, and archives these for future browsing and analysis. We applied this framework to the evaluation of 3 popular skull-stripping algorithms -the Brain Extraction Tool (Smith, 2002), the Hybrid Watershed Algorithm (Ségonne et al., 2004), and the Brain Surface Extractor ) under several different program settings. Our results show that with proper parameter selection, all 3 algorithms can achieve satisfactory skull-stripping on the test data.
The human hippocampal formation can be divided into a set of cytoarchitecturally and functionally distinct subregions, involved in different aspects of memory formation. Neuroanatomical disruptions within these subregions are associated with several debilitating brain disorders including Alzheimer’s disease, major depression, schizophrenia, and bipolar disorder. Multi-center brain imaging consortia, such as the Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) consortium, are interested in studying disease effects on these subregions, and in the genetic factors that affect them. For large-scale studies, automated extraction and subsequent genomic association studies of these hippocampal subregion measures may provide additional insight. Here, we evaluated the test–retest reliability and transplatform reliability (1.5 T versus 3 T) of the subregion segmentation module in the FreeSurfer software package using three independent cohorts of healthy adults, one young (Queensland Twins Imaging Study, N = 39), another elderly (Alzheimer’s Disease Neuroimaging Initiative, ADNI-2, N = 163) and another mixed cohort of healthy and depressed participants (Max Planck Institute, MPIP, N = 598). We also investigated agreement between the most recent version of this algorithm (v6.0) and an older version (v5.3), again using the ADNI-2 and MPIP cohorts in addition to a sample from the Netherlands Study for Depression and Anxiety (NESDA) (N = 221). Finally, we estimated the heritability (h2) of the segmented subregion volumes using the full sample of young, healthy QTIM twins (N = 728). Test–retest reliability was high for all twelve subregions in the 3 T ADNI-2 sample (intraclass correlation coefficient (ICC) = 0.70–0.97) and moderate-to-high in the 4 T QTIM sample (ICC = 0.5–0.89). Transplatform reliability was strong for eleven of the twelve subregions (ICC = 0.66–0.96); however, the hippocampal fissure was not consistently reconstructed across 1.5 T and 3 T field strengths (ICC = 0.47–0.57). Between-version agreement was moderate for the hippocampal tail, subiculum and presubiculum (ICC = 0.78–0.84; Dice Similarity Coefficient (DSC) = 0.55–0.70), and poor for all other subregions (ICC = 0.34–0.81; DSC = 0.28–0.51). All hippocampal subregion volumes were highly heritable (h2 = 0.67–0.91). Our findings indicate that eleven of the twelve human hippocampal subregions segmented using FreeSurfer version 6.0 may serve as reliable and informative quantitative phenotypes for future multi-site imaging genetics initiatives such as those of the ENIGMA consortium.
Fiber tractography based on non-invasive diffusion imaging is at the heart of connectivity studies of the human brain. To date, the approach has not been systematically validated in ground truth studies. Based on a simulated human brain dataset with ground truth white matter tracts, we organized an open international tractography challenge, which resulted in 96 distinct submissions from 20 research groups. While most state-of-the-art algorithms reconstructed 90% of ground truth bundles to at least some extent, on average they produced four times more invalid than valid bundles. About half of the invalid bundles occurred systematically in the majority of submissions. Our results demonstrate fundamental ambiguities inherent to tract reconstruction methods based on diffusion orientation information, with critical consequences for the approach of diffusion tractography in particular and human connectivity studies in general.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.