We propose using a pre-trained segmentation model to perform diagnostic classification in order to achieve better generalization and interpretability, terming the technique reverse-transfer learning. We present an architecture to convert segmentation models to classification models. We compare and contrast dense vs sparse segmentation labeling and study its impact on diagnostic classification. We compare the performance of U-Net trained with dense and sparse labels to segment A-lines, B-lines, and Pleural lines on a custom dataset of lung ultrasound scans from 4 patients. Our experiments show that dense labels help reduce false positive detection. We study the classification capability of the dense and sparse trained U-Net and contrast it with a non-pretrained U-Net, to detect and differentiate COVID-19 and Pneumonia on a large ultrasound dataset of about 40k curvilinear and linear probe images. Our segmentation-based models perform better classification when using pretrained segmentation weights, with the dense-label pretrained U-Net performing the best.
Contemporary artificial neural networks (ANN) are trained end-to-end, jointly learning both features and classifiers for the task of interest. Though enormously effective, this paradigm imposes significant costs in assembling annotated task-specific datasets and training large-scale networks. We propose to decouple feature learning from downstream lung ultrasound tasks by introducing an auxiliary pre-task of visual biomarker classification. We demonstrate that one can learn an informative, concise, and interpretable feature space from ultrasound videos by training models for predicting biomarker labels. Notably, biomarker feature extractors can be trained from data annotated with weak videoscale supervision. These features can be used by a variety of downstream Expert models targeted for diverse clinical tasks (Diagnosis, lung severity, S/F ratio). Crucially, task-specific expert models are comparable in accuracy to end-to-end models directly trained for such target tasks, while being significantly lower cost to train.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.