The study of gas-dust interactions occurring in the interstellar medium of a galaxy is essential for understanding various physical processes taking place within it. A comparison of such events at different locations corresponding to diverse astrophysical environments provides more insight into the star formation as well as dust destruction conditions and time-scales. We present a case study for two galaxies: NGC 3184 and NGC 7793, which are typical examples of a ‘grand design spiral’ and a ‘flocculent spiral’, respectively. We investigate the gas-dust correlations at various spatially resolved locations within each galaxy, including spiral arms, using archival data. Moreover, we have segregated the neutral gas into wide (warm) and narrow (cold) velocity components to check the correlations with individual dust emission bands. We find a positive correlation between the gas and the dust, with the total atomic gas emission mainly dominated by its warm component in both the galaxies. We also find the dust population in NGC 7793 to have a greater fraction of emission coming from cold and diffuse, larger-sized dust particles as compared to NGC 3184. This nearby galaxy pilot study could serve as a template for similar studies of larger galaxy samples with analogous morphologies.
Recent availability of high quality infrared (IR) data for diffuse regions in the Galaxy and external galaxies have added to our understanding of interstellar dust. A comparison of ultraviolet (UV) and IR observations may be used to estimate absorption, scattering and thermal emission from interstellar dust. In this paper, we report IR and UV observations for selective diffuse sources in the Galaxy. Using archival mid-infrared (MIR) and far-infrared (FIR) observations from Spitzer Space Telescope, we look for counterparts of diffuse far-ultraviolet (FUV) sources observed by the Voyager, Far Ultraviolet Spectroscopic Explorer (FUSE) and Galaxy Evolution Explorer (GALEX) telescopes in the Galaxy.IR emission features at 8µm are generally attributed to Polycyclic Aromatic Hydrocarbon (PAH) molecules, while emission at 24µm are attributed to Very Small Grains (VSGs). The data presented here is unique and our study tries to establish a relation between various dust populations. By studying the FUV-IR correlations separately at low and high latitude locations, we have identified the grain component responsible for the diffuse FUV emission.
Dust scattering is the main source of diffuse emission in the far-ultraviolet (FUV). For several locations in the Large Magellanic Cloud (LMC), Far Ultraviolet Spectroscopic Explorer (FUSE) satellite has observed diffuse radiation in the FUV with intensities ranging from 1000 -3 × 10 5 photon units and diffuse fraction between 5% -20% at 1100Å. Here, we compare the FUV diffuse emission with the mid-infrared (MIR) and far-infrared (FIR) diffuse emission observed by the Spitzer Space Telescope and the AKARI satellite for the same locations. The intensity ratios in the different MIR and FIR bands for each of the locations will enable us to determine the type of dust contributing to the diffuse emission as well as to derive a more accurate 3D distribution of stars and dust in the region, which in turn may be used to model the observed scattering in the FUV. In this work we present the infrared (IR) data for two different regions in LMC, namely N11 and 30 Doradus. We also present the FUV∼IR correlation for different infrared bands.
The presence of crystalline silicates has been detected in the circumstellar environment of several young stars in the recent past and there is evidence of silicon carbide (SiC) detection in the envelope of pre-main sequence star SVS13. In this work, we have attempted to probe the presence of SiC in the dust around protoplanetary disks in a sample of young stars. We have modelled the linear polarization of composite dust grains in the mid-infrared (MIR: 8-13 µm) using silicates as the host with various inclusions of SiC and graphites using the Discrete Dipole Approximation (DDA) and the Effective Medium Approximation (EMA) T-Matrix methods. We have then compared our modelling results with polarimetric observations made in the protoplanetary disks surrounding two Herbig Be stars and one T-Tauri star with particular emphasis towards the 10 µm silicate feature using CanariCam mounted over the Gran Telescopio Canarias (GTC). We report the possible existence of SiC in the outer disk/envelope around one star in our sample which has been interpreted based on the shape, size, composition and fraction of inclusions by volume in our dust grain models.
We have studied the diffuse radiation in the surroundings of M42 using photometric data from the Galaxy Evolution Explorer (GALEX) in the far-ultraviolet (FUV) and infrared observations of the AKARI space telescope. The main source of the FUV diffuse emission is the starlight from the Trapezium stars scattered by dust in front of the nebula. We initially compare the diffuse FUV with the far-infrared (FIR) observations at the same locations. The FUV-IR correlations enable us to determine the type of dust contributing to this emission. We then use an existing model for studying the FUV dust scattering in Orion to check if it can be extended to regions away from the centre in a 10 deg radius. We obtain an albedo, α = 0.7 and scattering phase function asymmetry factor, g = 0.6 as the median values for our dust locations on different sides of the central Orion region. We find a uniform value of optical parameters across our sample of locations with the dust properties varying significantly from those at the centre of the nebula.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.