To increase situational awareness and support evidence-based policymaking, we formulated a mathematical model for coronavirus disease transmission within a regional population. This compartmental model accounts for quarantine, self-isolation, social distancing, a nonexponentially distributed incubation period, asymptomatic persons, and mild and severe forms of symptomatic disease. We used Bayesian inference to calibrate region-specific models for consistency with daily reports of confirmed cases in the 15 most populous metropolitan statistical areas in the United States. We also quantified uncertainty in parameter estimates and forecasts. This online learning approach enables early identification of new trends despite considerable variability in case reporting.
A new generation of "behavior-aware" delay tolerant networks is emerging in what may define future mobile social networks. With the introduction of novel behavior-aware protocols, services and architectures, there is a pressing need to understand and realistically model mobile users behavioral characteristics, their similarity and clustering. Such models are essential for the analysis, performance evaluation, and simulation of future DTNs. This paper addresses issues related to mobile user similarity, its definition, analysis and modeling. To define similarity, we adopt a behavioral-profile based on users location preferences using their on-line association matrix and its SVD, then calculate the behavioral distance to capture user similarity. This measures the difference of the major spatio-temporal behavioral trends and can be used to cluster users into similarity groups or communities.We then analyze and contrast similarity distributions of mobile user populations in two settings: (i) based on real measurements from four major campuses with over ten thousand users for a month, and (ii) based on existing mobility models, including random direction and time-varying community models.Our results show a rich set of similar communities in real mobile societies with distinct behavioral clusters of users. This is true for all the traces studied, with the trend being consistent over time. Surprisingly, however, we find that the existing mobility models do not explicitly capture similarity and result in homogeneous users that are all similar to each other. Thus the richness and diversity of user behavioral patterns is not captured to any degree in the existing models. These findings strongly suggest that similarity should be explicitly captured in future mobility models, which motivates the need to re-visit mobility modeling to incorporate accurate behavioral models in the future.
Understanding building occupancy is critical to a wide array of applications including natural hazards loss analysis, green building technologies, and population distribution modeling. Due to the expense of directly monitoring buildings, scientists rely in addition on a wide and disparate array of ancillary and open source information including subject matter expertise, survey data, and remote sensing information. These data are fused using data harmonization methods, which refer to a loose collection of formal and informal techniques for fusing data together to create viable content for building occupancy estimation. In this paper, we add to the current state of the art by introducing the population data tables (PDT), a Bayesian model and informatics system for systematically arranging data and harmonization techniques into a consistent, transparent, knowledge learning framework that retains in the final estimation uncertainty emerging from data, expert judgment, and model parameterization. PDT aims to estimate ambient occupancy in units of people/1000 ft 2 for a number of building types at the national and sub-national level with the goal of providing global coverage. We present the PDT model, situate the work within the larger community, and report on the progress of this multi-year project.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.