Two major challenges in demand forecasting are product cannibalization and long term forecasting. Product cannibalization is a phenomenon in which high demand of some products leads to reduction in sales of other products. Long term forecasting involves forecasting the sales over longer time frame that is critical for strategic business purposes. Also, conventional methods, for instance, recurrent neural networks may be ineffective where train data size is small as in the case in this study. This work presents XGBoost-based three-stage framework that addresses product cannibalization and associated long term error propagation problems. The performance of the proposed three-stage XGBoost-based framework is compared to and is found superior than that of regular XGBoost algorithm.
This paper is an extension of our work [1] where we presented a three-stage XGBoost algorithm for forecasting sales under product cannibalization scenario. Previously we developed the model based on our intuition and provided empirical evidence on its performance. In this study we would briefly go over the algorithm and then provide mathematical reasoning behind its working.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.